Latent periodic process inference from single-cell RNA-seq data
Traditional methods for determining cell type composition lack scalability, while single-cell technologies remain costly and noisy compared to bulk RNA-seq. Here, the authors present a highly efficient tool to measure cellular heterogeneity in bulk expression through robust integration of single-cel...
Enregistré dans:
Auteurs principaux: | Shaoheng Liang, Fang Wang, Jincheng Han, Ken Chen |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/82f67d25755c4db7be7422364cee5dd4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Single-nuclei RNA-seq on human retinal tissue provides improved transcriptome profiling
par: Qingnan Liang, et autres
Publié: (2019) -
Detection and removal of barcode swapping in single-cell RNA-seq data
par: Jonathan A. Griffiths, et autres
Publié: (2018) -
SCALE method for single-cell ATAC-seq analysis via latent feature extraction
par: Lei Xiong, et autres
Publié: (2019) -
A web server for comparative analysis of single-cell RNA-seq data
par: Amir Alavi, et autres
Publié: (2018) -
Evaluation of Cell Type Annotation R Packages on Single-cell RNA-seq Data
par: Qianhui Huang, et autres
Publié: (2021)