Deep Learning Protein Conformational Space with Convolutions and Latent Interpolations
Determining the different conformational states of a protein and the transition paths between them is key to fully understanding the relationship between biomolecular structure and function. This can be accomplished by sampling protein conformational space with molecular simulation methodologies. De...
Enregistré dans:
Auteurs principaux: | Venkata K. Ramaswamy, Samuel C. Musson, Chris G. Willcocks, Matteo T. Degiacomi |
---|---|
Format: | article |
Langue: | EN |
Publié: |
American Physical Society
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/82f7acafe19041bc9e2a053f42497bd8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
An Effective Bicubic Convolution Interpolation-Based Iterative Luma Optimization for Enhancing Quality in Chroma Subsampling
par: Kuo-Liang Chung, et autres
Publié: (2021) -
A Novel Lidar Signal Denoising Method Based on Convolutional Autoencoding Deep Learning Neural Network
par: Minghuan Hu, et autres
Publié: (2021) -
The cubic B-spline interpolation method for numerical point solutions of conformable boundary value problems
par: Soumia Tayebi, et autres
Publié: (2022) -
The extremal function of interpolation formulas in W2(2,0) space
par: Boltaev, A.K., et autres
Publié: (2021) -
Explore Protein Conformational Space With Variational Autoencoder
par: Hao Tian, et autres
Publié: (2021)