Relating geostationary satellite measurements of aerosol optical depth (AOD) over East Asia to fine particulate matter (PM<sub>2.5</sub>): insights from the KORUS-AQ aircraft campaign and GEOS-Chem model simulations

<p>Geostationary satellite measurements of aerosol optical depth (AOD) over East Asia from the Geostationary Ocean Color Imager (GOCI) and Advanced Himawari Imager (AHI) instruments can augment surface monitoring of fine particulate matter (PM<span class="inline-formula"><su...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: S. Zhai, D. J. Jacob, J. F. Brewer, K. Li, J. M. Moch, J. Kim, S. Lee, H. Lim, H. C. Lee, S. K. Kuk, R. J. Park, J. I. Jeong, X. Wang, P. Liu, G. Luo, F. Yu, J. Meng, R. V. Martin, K. R. Travis, J. W. Hair, B. E. Anderson, J. E. Dibb, J. L. Jimenez, P. Campuzano-Jost, B. A. Nault, J.-H. Woo, Y. Kim, Q. Zhang, H. Liao
Formato: article
Lenguaje:EN
Publicado: Copernicus Publications 2021
Materias:
Acceso en línea:https://doaj.org/article/830494bd69aa4746bf55ffa09ea9dd7c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<p>Geostationary satellite measurements of aerosol optical depth (AOD) over East Asia from the Geostationary Ocean Color Imager (GOCI) and Advanced Himawari Imager (AHI) instruments can augment surface monitoring of fine particulate matter (PM<span class="inline-formula"><sub>2.5</sub></span>) air quality, but this requires better understanding of the AOD–PM<span class="inline-formula"><sub>2.5</sub></span> relationship. Here we use the GEOS-Chem chemical transport model to analyze the critical variables determining the AOD–PM<span class="inline-formula"><sub>2.5</sub></span> relationship over East Asia by simulation of observations from satellite, aircraft, and ground-based datasets. This includes the detailed vertical aerosol profiling over South Korea from the KORUS-AQ aircraft campaign (May–June 2016) with concurrent ground-based PM<span class="inline-formula"><sub>2.5</sub></span> composition, PM<span class="inline-formula"><sub>10</sub></span>, and AERONET AOD measurements. The KORUS-AQ data show that 550 nm AOD is mainly contributed by sulfate–nitrate–ammonium (SNA) and organic aerosols in the planetary boundary layer (PBL), despite large dust concentrations in the free troposphere, reflecting the optically effective size and high hygroscopicity of the PBL aerosols. We updated SNA and organic aerosol size distributions in GEOS-Chem to represent aerosol optical properties over East Asia by using in situ measurements of particle size distributions from KORUS-AQ. We find that SNA and organic aerosols over East Asia have larger size (number median radius of 0.11 <span class="inline-formula">µ</span>m with geometric standard deviation of 1.4) and 20 % larger mass extinction efficiency as compared to aerosols over North America (default setting in GEOS-Chem). Although GEOS-Chem is successful in reproducing the KORUS-AQ vertical profiles of aerosol mass, its ability to link AOD to PM<span class="inline-formula"><sub>2.5</sub></span> is limited by under-accounting of coarse PM and by a large overestimate of nighttime PM<span class="inline-formula"><sub>2.5</sub></span> nitrate. The GOCI–AHI AOD data over East Asia in different seasons show agreement with AERONET AODs and a spatial distribution consistent with surface PM<span class="inline-formula"><sub>2.5</sub></span> network data. The AOD observations over North China show a summer maximum and winter minimum, opposite in phase to surface PM<span class="inline-formula"><sub>2.5</sub></span>. This is due to low PBL depths compounded by high residential coal emissions in winter and high relative humidity (RH) in summer. Seasonality of AOD and PM<span class="inline-formula"><sub>2.5</sub></span> over South Korea is much weaker, reflecting weaker variation in PBL depth and lack of residential coal emissions.</p>