Predicting heterogeneous ice nucleation with a data-driven approach

Heterogenous ice nucleation is a ubiquitous phenomenon, but predicting the ice nucleation ability of a substrate is challenging. Here the authors develop a machine-learning data-driven approach to predict the ice nucleation ability of substrates, which is based on four descriptors related to physica...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Martin Fitzner, Philipp Pedevilla, Angelos Michaelides
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/831823056c1f4b0a8352e14baf8f5f16
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Heterogenous ice nucleation is a ubiquitous phenomenon, but predicting the ice nucleation ability of a substrate is challenging. Here the authors develop a machine-learning data-driven approach to predict the ice nucleation ability of substrates, which is based on four descriptors related to physical properties of the interface.