Predicting heterogeneous ice nucleation with a data-driven approach
Heterogenous ice nucleation is a ubiquitous phenomenon, but predicting the ice nucleation ability of a substrate is challenging. Here the authors develop a machine-learning data-driven approach to predict the ice nucleation ability of substrates, which is based on four descriptors related to physica...
Enregistré dans:
Auteurs principaux: | Martin Fitzner, Philipp Pedevilla, Angelos Michaelides |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/831823056c1f4b0a8352e14baf8f5f16 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Pre-critical fluctuations and what they disclose about heterogeneous crystal nucleation
par: Martin Fitzner, et autres
Publié: (2017) -
Enhanced heterogeneous ice nucleation by special surface geometry
par: Yuanfei Bi, et autres
Publié: (2017) -
Temperature-dependent kinetic pathways of heterogeneous ice nucleation competing between classical and non-classical nucleation
par: Chu Li, et autres
Publié: (2021) -
Origins of fast diffusion of water dimers on surfaces
par: Wei Fang, et autres
Publié: (2020) -
A biogenic secondary organic aerosol source of cirrus ice nucleating particles
par: Martin J. Wolf, et autres
Publié: (2020)