Heading towards a dead end: The role of DND1 in germ line differentiation of human iPSCs.

The DND microRNA-mediated repression inhibitor 1 (DND1) is a conserved RNA binding protein (RBP) that plays important roles in survival and fate maintenance of primordial germ cells (PGCs) and in the development of the male germline in zebrafish and mice. Dead end was shown to be expressed in human...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Eva M Mall, Aaron Lecanda, Hannes C A Drexler, Erez Raz, Hans R Schöler, Stefan Schlatt
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/83669aaa43e6403193133335592f9bfa
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:83669aaa43e6403193133335592f9bfa
record_format dspace
spelling oai:doaj.org-article:83669aaa43e6403193133335592f9bfa2021-12-02T20:07:51ZHeading towards a dead end: The role of DND1 in germ line differentiation of human iPSCs.1932-620310.1371/journal.pone.0258427https://doaj.org/article/83669aaa43e6403193133335592f9bfa2021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0258427https://doaj.org/toc/1932-6203The DND microRNA-mediated repression inhibitor 1 (DND1) is a conserved RNA binding protein (RBP) that plays important roles in survival and fate maintenance of primordial germ cells (PGCs) and in the development of the male germline in zebrafish and mice. Dead end was shown to be expressed in human pluripotent stem cells (PSCs), PGCs and spermatogonia, but little is known about its specific role concerning pluripotency and human germline development. Here we use CRISPR/Cas mediated knockout and PGC-like cell (PGCLC) differentiation in human iPSCs to determine if DND1 (1) plays a role in maintaining pluripotency and (2) in specification of PGCLCs. We generated several clonal lines carrying biallelic loss of function mutations and analysed their differentiation potential towards PGCLCs and their gene expression on RNA and protein levels via RNA sequencing and mass spectrometry. The generated knockout iPSCs showed no differences in pluripotency gene expression, proliferation, or trilineage differentiation potential, but yielded reduced numbers of PGCLCs as compared with their parental iPSCs. RNAseq analysis of mutated PGCLCs revealed that the overall gene expression remains like non-mutated PGCLCs. However, reduced expression of genes associated with PGC differentiation and maintenance (e.g., NANOS3, PRDM1) was observed. Together, we show that DND1 iPSCs maintain their pluripotency but exhibit a reduced differentiation to PGCLCs. This versatile model will allow further analysis of the specific mechanisms by which DND1 influences PGC differentiation and maintenance.Eva M MallAaron LecandaHannes C A DrexlerErez RazHans R SchölerStefan SchlattPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 10, p e0258427 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Eva M Mall
Aaron Lecanda
Hannes C A Drexler
Erez Raz
Hans R Schöler
Stefan Schlatt
Heading towards a dead end: The role of DND1 in germ line differentiation of human iPSCs.
description The DND microRNA-mediated repression inhibitor 1 (DND1) is a conserved RNA binding protein (RBP) that plays important roles in survival and fate maintenance of primordial germ cells (PGCs) and in the development of the male germline in zebrafish and mice. Dead end was shown to be expressed in human pluripotent stem cells (PSCs), PGCs and spermatogonia, but little is known about its specific role concerning pluripotency and human germline development. Here we use CRISPR/Cas mediated knockout and PGC-like cell (PGCLC) differentiation in human iPSCs to determine if DND1 (1) plays a role in maintaining pluripotency and (2) in specification of PGCLCs. We generated several clonal lines carrying biallelic loss of function mutations and analysed their differentiation potential towards PGCLCs and their gene expression on RNA and protein levels via RNA sequencing and mass spectrometry. The generated knockout iPSCs showed no differences in pluripotency gene expression, proliferation, or trilineage differentiation potential, but yielded reduced numbers of PGCLCs as compared with their parental iPSCs. RNAseq analysis of mutated PGCLCs revealed that the overall gene expression remains like non-mutated PGCLCs. However, reduced expression of genes associated with PGC differentiation and maintenance (e.g., NANOS3, PRDM1) was observed. Together, we show that DND1 iPSCs maintain their pluripotency but exhibit a reduced differentiation to PGCLCs. This versatile model will allow further analysis of the specific mechanisms by which DND1 influences PGC differentiation and maintenance.
format article
author Eva M Mall
Aaron Lecanda
Hannes C A Drexler
Erez Raz
Hans R Schöler
Stefan Schlatt
author_facet Eva M Mall
Aaron Lecanda
Hannes C A Drexler
Erez Raz
Hans R Schöler
Stefan Schlatt
author_sort Eva M Mall
title Heading towards a dead end: The role of DND1 in germ line differentiation of human iPSCs.
title_short Heading towards a dead end: The role of DND1 in germ line differentiation of human iPSCs.
title_full Heading towards a dead end: The role of DND1 in germ line differentiation of human iPSCs.
title_fullStr Heading towards a dead end: The role of DND1 in germ line differentiation of human iPSCs.
title_full_unstemmed Heading towards a dead end: The role of DND1 in germ line differentiation of human iPSCs.
title_sort heading towards a dead end: the role of dnd1 in germ line differentiation of human ipscs.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/83669aaa43e6403193133335592f9bfa
work_keys_str_mv AT evammall headingtowardsadeadendtheroleofdnd1ingermlinedifferentiationofhumanipscs
AT aaronlecanda headingtowardsadeadendtheroleofdnd1ingermlinedifferentiationofhumanipscs
AT hannescadrexler headingtowardsadeadendtheroleofdnd1ingermlinedifferentiationofhumanipscs
AT erezraz headingtowardsadeadendtheroleofdnd1ingermlinedifferentiationofhumanipscs
AT hansrscholer headingtowardsadeadendtheroleofdnd1ingermlinedifferentiationofhumanipscs
AT stefanschlatt headingtowardsadeadendtheroleofdnd1ingermlinedifferentiationofhumanipscs
_version_ 1718375253344780288