Heading towards a dead end: The role of DND1 in germ line differentiation of human iPSCs.
The DND microRNA-mediated repression inhibitor 1 (DND1) is a conserved RNA binding protein (RBP) that plays important roles in survival and fate maintenance of primordial germ cells (PGCs) and in the development of the male germline in zebrafish and mice. Dead end was shown to be expressed in human...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/83669aaa43e6403193133335592f9bfa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:83669aaa43e6403193133335592f9bfa |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:83669aaa43e6403193133335592f9bfa2021-12-02T20:07:51ZHeading towards a dead end: The role of DND1 in germ line differentiation of human iPSCs.1932-620310.1371/journal.pone.0258427https://doaj.org/article/83669aaa43e6403193133335592f9bfa2021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0258427https://doaj.org/toc/1932-6203The DND microRNA-mediated repression inhibitor 1 (DND1) is a conserved RNA binding protein (RBP) that plays important roles in survival and fate maintenance of primordial germ cells (PGCs) and in the development of the male germline in zebrafish and mice. Dead end was shown to be expressed in human pluripotent stem cells (PSCs), PGCs and spermatogonia, but little is known about its specific role concerning pluripotency and human germline development. Here we use CRISPR/Cas mediated knockout and PGC-like cell (PGCLC) differentiation in human iPSCs to determine if DND1 (1) plays a role in maintaining pluripotency and (2) in specification of PGCLCs. We generated several clonal lines carrying biallelic loss of function mutations and analysed their differentiation potential towards PGCLCs and their gene expression on RNA and protein levels via RNA sequencing and mass spectrometry. The generated knockout iPSCs showed no differences in pluripotency gene expression, proliferation, or trilineage differentiation potential, but yielded reduced numbers of PGCLCs as compared with their parental iPSCs. RNAseq analysis of mutated PGCLCs revealed that the overall gene expression remains like non-mutated PGCLCs. However, reduced expression of genes associated with PGC differentiation and maintenance (e.g., NANOS3, PRDM1) was observed. Together, we show that DND1 iPSCs maintain their pluripotency but exhibit a reduced differentiation to PGCLCs. This versatile model will allow further analysis of the specific mechanisms by which DND1 influences PGC differentiation and maintenance.Eva M MallAaron LecandaHannes C A DrexlerErez RazHans R SchölerStefan SchlattPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 10, p e0258427 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Eva M Mall Aaron Lecanda Hannes C A Drexler Erez Raz Hans R Schöler Stefan Schlatt Heading towards a dead end: The role of DND1 in germ line differentiation of human iPSCs. |
description |
The DND microRNA-mediated repression inhibitor 1 (DND1) is a conserved RNA binding protein (RBP) that plays important roles in survival and fate maintenance of primordial germ cells (PGCs) and in the development of the male germline in zebrafish and mice. Dead end was shown to be expressed in human pluripotent stem cells (PSCs), PGCs and spermatogonia, but little is known about its specific role concerning pluripotency and human germline development. Here we use CRISPR/Cas mediated knockout and PGC-like cell (PGCLC) differentiation in human iPSCs to determine if DND1 (1) plays a role in maintaining pluripotency and (2) in specification of PGCLCs. We generated several clonal lines carrying biallelic loss of function mutations and analysed their differentiation potential towards PGCLCs and their gene expression on RNA and protein levels via RNA sequencing and mass spectrometry. The generated knockout iPSCs showed no differences in pluripotency gene expression, proliferation, or trilineage differentiation potential, but yielded reduced numbers of PGCLCs as compared with their parental iPSCs. RNAseq analysis of mutated PGCLCs revealed that the overall gene expression remains like non-mutated PGCLCs. However, reduced expression of genes associated with PGC differentiation and maintenance (e.g., NANOS3, PRDM1) was observed. Together, we show that DND1 iPSCs maintain their pluripotency but exhibit a reduced differentiation to PGCLCs. This versatile model will allow further analysis of the specific mechanisms by which DND1 influences PGC differentiation and maintenance. |
format |
article |
author |
Eva M Mall Aaron Lecanda Hannes C A Drexler Erez Raz Hans R Schöler Stefan Schlatt |
author_facet |
Eva M Mall Aaron Lecanda Hannes C A Drexler Erez Raz Hans R Schöler Stefan Schlatt |
author_sort |
Eva M Mall |
title |
Heading towards a dead end: The role of DND1 in germ line differentiation of human iPSCs. |
title_short |
Heading towards a dead end: The role of DND1 in germ line differentiation of human iPSCs. |
title_full |
Heading towards a dead end: The role of DND1 in germ line differentiation of human iPSCs. |
title_fullStr |
Heading towards a dead end: The role of DND1 in germ line differentiation of human iPSCs. |
title_full_unstemmed |
Heading towards a dead end: The role of DND1 in germ line differentiation of human iPSCs. |
title_sort |
heading towards a dead end: the role of dnd1 in germ line differentiation of human ipscs. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/83669aaa43e6403193133335592f9bfa |
work_keys_str_mv |
AT evammall headingtowardsadeadendtheroleofdnd1ingermlinedifferentiationofhumanipscs AT aaronlecanda headingtowardsadeadendtheroleofdnd1ingermlinedifferentiationofhumanipscs AT hannescadrexler headingtowardsadeadendtheroleofdnd1ingermlinedifferentiationofhumanipscs AT erezraz headingtowardsadeadendtheroleofdnd1ingermlinedifferentiationofhumanipscs AT hansrscholer headingtowardsadeadendtheroleofdnd1ingermlinedifferentiationofhumanipscs AT stefanschlatt headingtowardsadeadendtheroleofdnd1ingermlinedifferentiationofhumanipscs |
_version_ |
1718375253344780288 |