Adaptive Deep Co-Occurrence Feature Learning Based on Classifier-Fusion for Remote Sensing Scene Classification
Remote sensing scene classification has numerous applications on land cover land use. However, classifying the scene images into their correct categories is a challenging task. This challenge is attributable to the diverse semantics of remote sensing images. This nature of remote sensing images make...
Guardado en:
Autores principales: | Ronald Tombe, Serestina Viriri |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8375e9d955184c62b7a659acda78357a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
MSMatch: Semisupervised Multispectral Scene Classification With Few Labels
por: Pablo Gomez, et al.
Publicado: (2021) -
Global Context-Based Multilevel Feature Fusion Networks for Multilabel Remote Sensing Image Scene Classification
por: Xin Wang, et al.
Publicado: (2021) -
A New Convolutional Kernel Classifier for Hyperspectral Image Classification
por: Mohsen Ansari, et al.
Publicado: (2021) -
Patch-Free Bilateral Network for Hyperspectral Image Classification Using Limited Samples
por: Bing Liu, et al.
Publicado: (2021) -
Change Detection in Hyperdimensional Images Using Untrained Models
por: Sudipan Saha, et al.
Publicado: (2021)