Comparison of modified ADM and classical finite difference method for some third-order and fifth-order KdV equations
The KdV equation, which appears as an asymptotic model in physical systems ranging from water waves to plasma physics, has been studied. In this paper, we are concerned with dispersive nonlinear KdV equations by using two reliable methods: Shehu Adomian decomposition method (STADM) and the classical...
Enregistré dans:
Auteurs principaux: | Appadu Appanah Rao, Kelil Abey Sherif |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/83786f6978294ebbb129326a6c66911b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Closed-form solutions and conservation laws of a generalized Hirota–Satsuma coupled KdV system of fluid mechanics
par: Khalique Chaudry Masood
Publié: (2021) -
Sharp conditions on global existence and blow-up in a degenerate two-species and cross-attraction system
par: Carrillo Antonio José, et autres
Publié: (2021) -
Existence and nonlinear stability of solitary wave solutions for coupled Schrodinger-KdV systems
par: Pengxue Cui, et autres
Publié: (2021) -
On Soliton Solutions of Perturbed Boussinesq and KdV-Caudery-Dodd-Gibbon Equations
par: Muhammad Imran Asjad, et autres
Publié: (2021) -
Blow-up results of the positive solution for a class of degenerate parabolic equations
par: Dong Chenyu, et autres
Publié: (2021)