Comparison of modified ADM and classical finite difference method for some third-order and fifth-order KdV equations
The KdV equation, which appears as an asymptotic model in physical systems ranging from water waves to plasma physics, has been studied. In this paper, we are concerned with dispersive nonlinear KdV equations by using two reliable methods: Shehu Adomian decomposition method (STADM) and the classical...
Guardado en:
Autores principales: | Appadu Appanah Rao, Kelil Abey Sherif |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/83786f6978294ebbb129326a6c66911b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Closed-form solutions and conservation laws of a generalized Hirota–Satsuma coupled KdV system of fluid mechanics
por: Khalique Chaudry Masood
Publicado: (2021) -
Sharp conditions on global existence and blow-up in a degenerate two-species and cross-attraction system
por: Carrillo Antonio José, et al.
Publicado: (2021) -
Existence and nonlinear stability of solitary wave solutions for coupled Schrodinger-KdV systems
por: Pengxue Cui, et al.
Publicado: (2021) -
On Soliton Solutions of Perturbed Boussinesq and KdV-Caudery-Dodd-Gibbon Equations
por: Muhammad Imran Asjad, et al.
Publicado: (2021) -
Blow-up results of the positive solution for a class of degenerate parabolic equations
por: Dong Chenyu, et al.
Publicado: (2021)