Exact Rank Reduction of Network Models
With the advent of the big data era, generative models of complex networks are becoming elusive from direct computational simulation. We present an exact, linear-algebraic reduction scheme of generative models of networks. By exploiting the bilinear structure of the matrix representation of the gene...
Guardado en:
Autores principales: | Eugenio Valdano, Alex Arenas |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8397ad9ca0234499a408c98b1faab7f4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Two new results about quantum exact learning
por: Srinivasan Arunachalam, et al.
Publicado: (2021) -
Exact Long-Range Dielectric Screening and Interatomic Force Constants in Quasi-Two-Dimensional Crystals
por: Miquel Royo, et al.
Publicado: (2021) -
Fluctuating Nature of Light-Enhanced d-Wave Superconductivity: A Time-Dependent Variational Non-Gaussian Exact Diagonalization Study
por: Yao Wang, et al.
Publicado: (2021) -
Exact non-stationary solution for the density matrix of single two-level atom
por: Enachi, Nicolae, et al.
Publicado: (2009) -
Modeling the Influence of Data Structure on Learning in Neural Networks: The Hidden Manifold Model
por: Sebastian Goldt, et al.
Publicado: (2020)