Brane current algebras and generalised geometry from QP manifolds. Or, “when they go high, we go low”

Abstract We construct a Poisson algebra of brane currents from a QP-manifold, and show their Poisson brackets take a universal geometric form. This generalises a result of Alekseev and Strobl on string currents and generalised geometry to include branes with worldvolume gauge fields, such as the D3...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Alex S. Arvanitakis
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
Acceso en línea:https://doaj.org/article/83b34138466a4877800bed167ffd843b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract We construct a Poisson algebra of brane currents from a QP-manifold, and show their Poisson brackets take a universal geometric form. This generalises a result of Alekseev and Strobl on string currents and generalised geometry to include branes with worldvolume gauge fields, such as the D3 and M5. Our result yields a universal expression for the ’t Hooft anomaly that afflicts isometries in the presence of fluxes. We determine the current algebra in terms of (exceptional) generalised geometry, and show that the tensor hierarchy gives rise to a brane current hierarchy. Exceptional complex structures produce pairs of anomaly-free current subalgebras on the M5-brane worldvolume.