Radiography image analysis using cat swarm optimized deep belief networks
Radiography images are widely utilized in the health sector to recognize the patient health condition. The noise and irrelevant region information minimize the entire disease detection accuracy and computation complexity. Therefore, in this study, statistical Kolmogorov–Smirnov test has been integra...
Guardado en:
Autores principales: | Elameer Amer S., Jaber Mustafa Musa, Abd Sura Khalil |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/83b728c7b51b49e88db055f6541b8d37 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Accuracy in the Diagnosis of the Mental Nerve Loop: A Comparative Study Between Panoramic Radiography and Cone Beam Computed Tomography
por: Couto-Filho,Carlos Eduardo Gomes do, et al.
Publicado: (2015) -
Frequency of Ponticulus Posticus in Lateral Cephalometric Radiography of Peruvian Patients
por: Pérez,Iván E, et al.
Publicado: (2014) -
Panoramic Radiography and Cone Beam Computed Tomography in the Early Diagnosis of Atheroma in the Extracranial and Intracranial Internal Carotid Artery: A Case Report
por: Villoria,Eduardo Murad, et al.
Publicado: (2019) -
Control Chart Patterns Recognition Based on Optimized Deep Belief Neural Network and Data Information Enhancement
por: Hongyan Chu, et al.
Publicado: (2020) -
Methods of oestrus prevention in dogs and cats: a survey of Turkish veterinarian's practices and beliefs
por: Sontas,BH, et al.
Publicado: (2012)