Radiography image analysis using cat swarm optimized deep belief networks
Radiography images are widely utilized in the health sector to recognize the patient health condition. The noise and irrelevant region information minimize the entire disease detection accuracy and computation complexity. Therefore, in this study, statistical Kolmogorov–Smirnov test has been integra...
Enregistré dans:
Auteurs principaux: | Elameer Amer S., Jaber Mustafa Musa, Abd Sura Khalil |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/83b728c7b51b49e88db055f6541b8d37 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Accuracy in the Diagnosis of the Mental Nerve Loop: A Comparative Study Between Panoramic Radiography and Cone Beam Computed Tomography
par: Couto-Filho,Carlos Eduardo Gomes do, et autres
Publié: (2015) -
Frequency of Ponticulus Posticus in Lateral Cephalometric Radiography of Peruvian Patients
par: Pérez,Iván E, et autres
Publié: (2014) -
Panoramic Radiography and Cone Beam Computed Tomography in the Early Diagnosis of Atheroma in the Extracranial and Intracranial Internal Carotid Artery: A Case Report
par: Villoria,Eduardo Murad, et autres
Publié: (2019) -
Control Chart Patterns Recognition Based on Optimized Deep Belief Neural Network and Data Information Enhancement
par: Hongyan Chu, et autres
Publié: (2020) -
Methods of oestrus prevention in dogs and cats: a survey of Turkish veterinarian's practices and beliefs
par: Sontas,BH, et autres
Publié: (2012)