Cost-effectiveness of artificial intelligence monitoring for active tuberculosis treatment: A modeling study.
<h4>Background</h4>Tuberculosis (TB) incidence in Los Angeles County, California, USA (5.7 per 100,000) is significantly higher than the U.S. national average (2.9 per 100,000). Directly observed therapy (DOT) is the preferred strategy for active TB treatment but requires substantial res...
Guardado en:
Autores principales: | Jonathan Salcedo, Monica Rosales, Jeniffer S Kim, Daisy Nuno, Sze-Chuan Suen, Alicia H Chang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/83c85b42368844d588c9db0ca67a68be |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Artificial Intelligence in Digital Agriculture. Towards In-Field Grapevine Monitoring using Non-invasive Sensors
por: Gutiérrez Salcedo, Salvador
Publicado: (2019) -
Artificial Intelligence Approach to the Monitoring of Respiratory Sounds in Asthmatic Patients
por: Honorata Hafke-Dys, et al.
Publicado: (2021) - Artificial intelligence
-
Application of artificial intelligence in digital chest radiography reading for pulmonary tuberculosis screening
por: Xue-Fang Cao, et al.
Publicado: (2021) -
iNurse: Intelligent, low-cost pediatric vital signs monitoring system
por: N. Lo, et al.
Publicado: (2014)