Machine intelligence in healthcare—perspectives on trustworthiness, explainability, usability, and transparency
Machine Intelligence (MI) is rapidly becoming an important approach across biomedical discovery, clinical research, medical diagnostics/devices, and precision medicine. Such tools can uncover new possibilities for researchers, physicians, and patients, allowing them to make more informed decisions a...
Guardado en:
Autores principales: | Christine M. Cutillo, Karlie R. Sharma, Luca Foschini, Shinjini Kundu, Maxine Mackintosh, Kenneth D. Mandl, MI in Healthcare Workshop Working Group |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/83ce70f92f1146a5ac7b2a83189e0791 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Trustworthy Intrusion Detection in E-Healthcare Systems
por: Faiza Akram, et al.
Publicado: (2021) -
Patient apprehensions about the use of artificial intelligence in healthcare
por: Jordan P. Richardson, et al.
Publicado: (2021) -
Developing a delivery science for artificial intelligence in healthcare
por: Ron C. Li, et al.
Publicado: (2020) -
Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare
por: Davide Cirillo, et al.
Publicado: (2020) -
Clinical risk prediction models: the canary in the coalmine for artificial intelligence in healthcare?
por: John Ainsworth, et al.
Publicado: (2021)