The Leucine-Responsive Regulatory Protein Lrp Participates in Virulence Regulation Downstream of Small RNA ArcZ in <named-content content-type="genus-species">Erwinia amylovora</named-content>

ABSTRACT Erwinia amylovora causes the devastating fire blight disease of apple and pear trees. During systemic infection of host trees, pathogen cells must rapidly respond to changes in their environment as they move through different host tissues that present distinct challenges and sources of nutr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jeffrey K. Schachterle, George W. Sundin
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2019
Materias:
Hfq
Acceso en línea:https://doaj.org/article/83e1a502130d4f68ab146217f42838ba
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:83e1a502130d4f68ab146217f42838ba
record_format dspace
spelling oai:doaj.org-article:83e1a502130d4f68ab146217f42838ba2021-11-15T15:55:24ZThe Leucine-Responsive Regulatory Protein Lrp Participates in Virulence Regulation Downstream of Small RNA ArcZ in <named-content content-type="genus-species">Erwinia amylovora</named-content>10.1128/mBio.00757-192150-7511https://doaj.org/article/83e1a502130d4f68ab146217f42838ba2019-06-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00757-19https://doaj.org/toc/2150-7511ABSTRACT Erwinia amylovora causes the devastating fire blight disease of apple and pear trees. During systemic infection of host trees, pathogen cells must rapidly respond to changes in their environment as they move through different host tissues that present distinct challenges and sources of nutrition. Growing evidence indicates that small RNAs (sRNAs) play an important role in disease progression as posttranscriptional regulators. The sRNA ArcZ positively regulates the motility phenotype and transcription of flagellar genes in E. amylovora Ea1189 yet is a direct repressor of translation of the flagellar master regulator, FlhD. We utilized transposon mutagenesis to conduct a forward genetic screen and identified suppressor mutations that increase motility in the Ea1189ΔarcZ mutant background. This enabled us to determine that the mechanism of transcriptional activation of the flhDC mRNA by ArcZ is mediated by the leucine-responsive regulatory protein, Lrp. We show that Lrp contributes to expression of virulence and several virulence-associated traits, including production of the exopolysaccharide amylovoran, levansucrase activity, and biofilm formation. We further show that Lrp is regulated posttranscriptionally by ArcZ through destabilization of lrp mRNA. Thus, ArcZ regulation of FlhDC directly and indirectly through Lrp forms an incoherent feed-forward loop that regulates levansucrase activity and motility as outputs. This work identifies Lrp as a novel participant in virulence regulation in E. amylovora and places it in the context of a virulence-associated regulatory network. IMPORTANCE Fire blight disease continues to plague the commercial production of apples and pears despite more than a century of research into disease epidemiology and disease control. The causative agent of fire blight, Erwinia amylovora coordinates turning on or off specific virulence-associated traits at the appropriate time during disease development. The development of novel control strategies requires an in-depth understanding of E. amylovora regulatory mechanisms, including regulatory control of virulence-associated traits. This study investigates how the small RNA ArcZ regulates motility at the transcriptional level and identifies the transcription factor Lrp as a novel participant in the regulation of several virulence-associated traits. We report that ArcZ and Lrp together affect key virulence-associated traits through integration of transcriptional and posttranscriptional mechanisms. Further understanding of the topology of virulence regulatory networks can uncover weak points that can subsequently be exploited to control E. amylovora.Jeffrey K. SchachterleGeorge W. SundinAmerican Society for MicrobiologyarticleFlhDCHfqfire blightMicrobiologyQR1-502ENmBio, Vol 10, Iss 3 (2019)
institution DOAJ
collection DOAJ
language EN
topic FlhDC
Hfq
fire blight
Microbiology
QR1-502
spellingShingle FlhDC
Hfq
fire blight
Microbiology
QR1-502
Jeffrey K. Schachterle
George W. Sundin
The Leucine-Responsive Regulatory Protein Lrp Participates in Virulence Regulation Downstream of Small RNA ArcZ in <named-content content-type="genus-species">Erwinia amylovora</named-content>
description ABSTRACT Erwinia amylovora causes the devastating fire blight disease of apple and pear trees. During systemic infection of host trees, pathogen cells must rapidly respond to changes in their environment as they move through different host tissues that present distinct challenges and sources of nutrition. Growing evidence indicates that small RNAs (sRNAs) play an important role in disease progression as posttranscriptional regulators. The sRNA ArcZ positively regulates the motility phenotype and transcription of flagellar genes in E. amylovora Ea1189 yet is a direct repressor of translation of the flagellar master regulator, FlhD. We utilized transposon mutagenesis to conduct a forward genetic screen and identified suppressor mutations that increase motility in the Ea1189ΔarcZ mutant background. This enabled us to determine that the mechanism of transcriptional activation of the flhDC mRNA by ArcZ is mediated by the leucine-responsive regulatory protein, Lrp. We show that Lrp contributes to expression of virulence and several virulence-associated traits, including production of the exopolysaccharide amylovoran, levansucrase activity, and biofilm formation. We further show that Lrp is regulated posttranscriptionally by ArcZ through destabilization of lrp mRNA. Thus, ArcZ regulation of FlhDC directly and indirectly through Lrp forms an incoherent feed-forward loop that regulates levansucrase activity and motility as outputs. This work identifies Lrp as a novel participant in virulence regulation in E. amylovora and places it in the context of a virulence-associated regulatory network. IMPORTANCE Fire blight disease continues to plague the commercial production of apples and pears despite more than a century of research into disease epidemiology and disease control. The causative agent of fire blight, Erwinia amylovora coordinates turning on or off specific virulence-associated traits at the appropriate time during disease development. The development of novel control strategies requires an in-depth understanding of E. amylovora regulatory mechanisms, including regulatory control of virulence-associated traits. This study investigates how the small RNA ArcZ regulates motility at the transcriptional level and identifies the transcription factor Lrp as a novel participant in the regulation of several virulence-associated traits. We report that ArcZ and Lrp together affect key virulence-associated traits through integration of transcriptional and posttranscriptional mechanisms. Further understanding of the topology of virulence regulatory networks can uncover weak points that can subsequently be exploited to control E. amylovora.
format article
author Jeffrey K. Schachterle
George W. Sundin
author_facet Jeffrey K. Schachterle
George W. Sundin
author_sort Jeffrey K. Schachterle
title The Leucine-Responsive Regulatory Protein Lrp Participates in Virulence Regulation Downstream of Small RNA ArcZ in <named-content content-type="genus-species">Erwinia amylovora</named-content>
title_short The Leucine-Responsive Regulatory Protein Lrp Participates in Virulence Regulation Downstream of Small RNA ArcZ in <named-content content-type="genus-species">Erwinia amylovora</named-content>
title_full The Leucine-Responsive Regulatory Protein Lrp Participates in Virulence Regulation Downstream of Small RNA ArcZ in <named-content content-type="genus-species">Erwinia amylovora</named-content>
title_fullStr The Leucine-Responsive Regulatory Protein Lrp Participates in Virulence Regulation Downstream of Small RNA ArcZ in <named-content content-type="genus-species">Erwinia amylovora</named-content>
title_full_unstemmed The Leucine-Responsive Regulatory Protein Lrp Participates in Virulence Regulation Downstream of Small RNA ArcZ in <named-content content-type="genus-species">Erwinia amylovora</named-content>
title_sort leucine-responsive regulatory protein lrp participates in virulence regulation downstream of small rna arcz in <named-content content-type="genus-species">erwinia amylovora</named-content>
publisher American Society for Microbiology
publishDate 2019
url https://doaj.org/article/83e1a502130d4f68ab146217f42838ba
work_keys_str_mv AT jeffreykschachterle theleucineresponsiveregulatoryproteinlrpparticipatesinvirulenceregulationdownstreamofsmallrnaarczinnamedcontentcontenttypegenusspecieserwiniaamylovoranamedcontent
AT georgewsundin theleucineresponsiveregulatoryproteinlrpparticipatesinvirulenceregulationdownstreamofsmallrnaarczinnamedcontentcontenttypegenusspecieserwiniaamylovoranamedcontent
AT jeffreykschachterle leucineresponsiveregulatoryproteinlrpparticipatesinvirulenceregulationdownstreamofsmallrnaarczinnamedcontentcontenttypegenusspecieserwiniaamylovoranamedcontent
AT georgewsundin leucineresponsiveregulatoryproteinlrpparticipatesinvirulenceregulationdownstreamofsmallrnaarczinnamedcontentcontenttypegenusspecieserwiniaamylovoranamedcontent
_version_ 1718427228361981952