The generative capacity of probabilistic protein sequence models

Generative models have become increasingly popular in protein design, yet rigorous metrics that allow the comparison of these models are lacking. Here, the authors propose a set of such metrics and use them to compare three popular models.

Guardado en:
Detalles Bibliográficos
Autores principales: Francisco McGee, Sandro Hauri, Quentin Novinger, Slobodan Vucetic, Ronald M. Levy, Vincenzo Carnevale, Allan Haldane
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/83efc157c65a47839c682e567e6f8c92
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:83efc157c65a47839c682e567e6f8c92
record_format dspace
spelling oai:doaj.org-article:83efc157c65a47839c682e567e6f8c922021-11-08T11:12:25ZThe generative capacity of probabilistic protein sequence models10.1038/s41467-021-26529-92041-1723https://doaj.org/article/83efc157c65a47839c682e567e6f8c922021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26529-9https://doaj.org/toc/2041-1723Generative models have become increasingly popular in protein design, yet rigorous metrics that allow the comparison of these models are lacking. Here, the authors propose a set of such metrics and use them to compare three popular models.Francisco McGeeSandro HauriQuentin NovingerSlobodan VuceticRonald M. LevyVincenzo CarnevaleAllan HaldaneNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Francisco McGee
Sandro Hauri
Quentin Novinger
Slobodan Vucetic
Ronald M. Levy
Vincenzo Carnevale
Allan Haldane
The generative capacity of probabilistic protein sequence models
description Generative models have become increasingly popular in protein design, yet rigorous metrics that allow the comparison of these models are lacking. Here, the authors propose a set of such metrics and use them to compare three popular models.
format article
author Francisco McGee
Sandro Hauri
Quentin Novinger
Slobodan Vucetic
Ronald M. Levy
Vincenzo Carnevale
Allan Haldane
author_facet Francisco McGee
Sandro Hauri
Quentin Novinger
Slobodan Vucetic
Ronald M. Levy
Vincenzo Carnevale
Allan Haldane
author_sort Francisco McGee
title The generative capacity of probabilistic protein sequence models
title_short The generative capacity of probabilistic protein sequence models
title_full The generative capacity of probabilistic protein sequence models
title_fullStr The generative capacity of probabilistic protein sequence models
title_full_unstemmed The generative capacity of probabilistic protein sequence models
title_sort generative capacity of probabilistic protein sequence models
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/83efc157c65a47839c682e567e6f8c92
work_keys_str_mv AT franciscomcgee thegenerativecapacityofprobabilisticproteinsequencemodels
AT sandrohauri thegenerativecapacityofprobabilisticproteinsequencemodels
AT quentinnovinger thegenerativecapacityofprobabilisticproteinsequencemodels
AT slobodanvucetic thegenerativecapacityofprobabilisticproteinsequencemodels
AT ronaldmlevy thegenerativecapacityofprobabilisticproteinsequencemodels
AT vincenzocarnevale thegenerativecapacityofprobabilisticproteinsequencemodels
AT allanhaldane thegenerativecapacityofprobabilisticproteinsequencemodels
AT franciscomcgee generativecapacityofprobabilisticproteinsequencemodels
AT sandrohauri generativecapacityofprobabilisticproteinsequencemodels
AT quentinnovinger generativecapacityofprobabilisticproteinsequencemodels
AT slobodanvucetic generativecapacityofprobabilisticproteinsequencemodels
AT ronaldmlevy generativecapacityofprobabilisticproteinsequencemodels
AT vincenzocarnevale generativecapacityofprobabilisticproteinsequencemodels
AT allanhaldane generativecapacityofprobabilisticproteinsequencemodels
_version_ 1718442352369991680