The generative capacity of probabilistic protein sequence models
Generative models have become increasingly popular in protein design, yet rigorous metrics that allow the comparison of these models are lacking. Here, the authors propose a set of such metrics and use them to compare three popular models.
Guardado en:
Autores principales: | Francisco McGee, Sandro Hauri, Quentin Novinger, Slobodan Vucetic, Ronald M. Levy, Vincenzo Carnevale, Allan Haldane |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/83efc157c65a47839c682e567e6f8c92 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Synthetic data generation with probabilistic Bayesian Networks
por: Grigoriy Gogoshin, et al.
Publicado: (2021) -
Probing T-cell response by sequence-based probabilistic modeling.
por: Barbara Bravi, et al.
Publicado: (2021) -
On triple difference sequences of real numbers in probabilistic normed spaces
por: Tripathy,Binod Chandra, et al.
Publicado: (2014) -
A novel probabilistic generator for large-scale gene association networks.
por: Tyler Grimes, et al.
Publicado: (2021) -
A novel probabilistic generator for large-scale gene association networks
por: Tyler Grimes, et al.
Publicado: (2021)