Feature Selection Based on Random Forest for Partial Discharges Characteristic Set
Since the dimension of combined feature set for partial discharge (PD) pattern recognition is higher, the corresponding sample size increases, as does the required amount of storage space and calculation, and there are features with less category-related characteristics in the feature parameters, wh...
Guardado en:
Autores principales: | Rui Yao, Jun Li, Meng Hui, Lin Bai, Qisheng Wu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/83f09defe95346b182b4b8f5fc2d6564 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
IDENTIFICATION OF TECHNOLOGICAL DEFECTS IN HIGH-VOLTAGE SOLID INSULATION OF ELECTRICAL INSULATION STRUCTURES ON THE CHARACTERISTICS OF PARTIAL DISCHARGES
por: G. V. Bezprozvannych, et al.
Publicado: (2019) -
ANALYSIS OF FIELD STRUCTURE AND JUSTIFICATION OF VOLTAGES OF DIAGNOSTICS BY PARTIAL DISCHARGES OF SHIELDED TWISTED PAIRS INSULATION
por: A.V. Bezprozvannych, et al.
Publicado: (2014) -
Frequency Resolved Partial Discharges Based on Spectral Pulse Counting
por: Anderson J. C. Sena, et al.
Publicado: (2021) -
Review on Detection and Analysis of Partial Discharge along Power Cables
por: Xiaohua Zhang, et al.
Publicado: (2021) -
KK-DBP: A Multi-Feature Fusion Method for DNA-Binding Protein Identification Based on Random Forest
por: Yuran Jia, et al.
Publicado: (2021)