Generalized proportional fractional integral Hermite–Hadamard’s inequalities
Abstract The theory of fractional integral inequalities plays an intrinsic role in approximation theory also it has been a key in establishing the uniqueness of solutions for some fractional differential equations. Fractional calculus has been found to be the best for modeling physical and engineeri...
Guardado en:
Autores principales: | Tariq A. Aljaaidi, Deepak B. Pachpatte, Thabet Abdeljawad, Mohammed S. Abdo, Mohammed A. Almalahi, Saleh S. Redhwan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/83fdc9dddacc4c329eb3642433d6ac7e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Companions of Hermite-Hadamard Inequality for Convex Functions (II)
por: Dragomir,S. S., et al.
Publicado: (2014) -
Hermite-Hadamard type fractional integral inequalities for generalized beta ( r , g )-preinvex functions
por: Kashuri,Artion, et al.
Publicado: (2017) -
Generalizations of Hermite-Hadamard and Ostrowski type inequalities for MTm-preinvex functions
por: Kashuri,Artion, et al.
Publicado: (2017) -
Some Hermite–Hadamard-Type Fractional Integral Inequalities Involving Twice-Differentiable Mappings
por: Soubhagya Kumar Sahoo, et al.
Publicado: (2021) -
Hermite-Hadamard type fractional integral inequalities for products of two MT (r;g,m,φ)- preinvex functions
por: Kashuri,Artion, et al.
Publicado: (2020)