Electrophysiological engineering of heart-derived cells with calcium-dependent potassium channels improves cell therapy efficacy for cardioprotection
Strategies to improve the function of damaged hearts with progenitor cells have stalled. Here, the authors show that gene transfer of a calcium-dependent potassium channel enhances the functional properties and ability of explant-derived cells to improve heart function after a heart attack.
Guardado en:
Autores principales: | Patrick Vigneault, Sandrine Parent, Pushpinder Kanda, Connor Michie, Darryl R. Davis, Stanley Nattel |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/840a9115e7784df6b8daa2ba58242d52 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A computational model of pig ventricular cardiomyocyte electrophysiology and calcium handling: Translation from pig to human electrophysiology.
por: Namit Gaur, et al.
Publicado: (2021) -
Revisiting the Large-Conductance Calcium-Activated Potassium (BKCa) Channels in the Pulmonary Circulation
por: Divya Guntur, et al.
Publicado: (2021) -
Calcium-activated potassium current modulates ventricular repolarization in chronic heart failure.
por: Ingrid M Bonilla, et al.
Publicado: (2014) -
Characterization of voltage-gated potassium channels in human neural progenitor cells.
por: Grit Schaarschmidt, et al.
Publicado: (2009) -
Stretching the limits of antiarrhythmic drug therapy: The promise of small-conductance calcium-activated potassium channel blockers
por: Jordi Heijman, et al.
Publicado: (2021)