Deep hierarchical embedding for simultaneous modeling of GPCR proteins in a unified metric space
Abstract GPCR proteins belong to diverse families of proteins that are defined at multiple hierarchical levels. Inspecting relationships between GPCR proteins on the hierarchical structure is important, since characteristics of the protein can be inferred from proteins in similar hierarchical inform...
Guardado en:
Autores principales: | Taeheon Lee, Sangseon Lee, Minji Kang, Sun Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/84143de8168042d6864cb0ea665b6216 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Aligning academia and industry for unified battery performance metrics
por: Zhan Lin, et al.
Publicado: (2018) -
Publisher Correction: Aligning academia and industry for unified battery performance metrics
por: Zhan Lin, et al.
Publicado: (2019) -
Coevolution underlies GPCR-G protein selectivity and functionality
por: Min Jae Seo, et al.
Publicado: (2021) -
Hierarchical information clustering by means of topologically embedded graphs.
por: Won-Min Song, et al.
Publicado: (2012) -
Fusing multidimensional hierarchical information into finer spatial landscape metrics
por: Gang Fu, et al.
Publicado: (2021)