New Parameterized Inequalities for <i>η</i>-Quasiconvex Functions via (<i>p</i>, <i>q</i>)-Calculus
In this work, first, we consider novel parameterized identities for the left and right part of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,<...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/84180b2a4c1846fa952bc556e690029e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:84180b2a4c1846fa952bc556e690029e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:84180b2a4c1846fa952bc556e690029e2021-11-25T17:30:29ZNew Parameterized Inequalities for <i>η</i>-Quasiconvex Functions via (<i>p</i>, <i>q</i>)-Calculus10.3390/e231115231099-4300https://doaj.org/article/84180b2a4c1846fa952bc556e690029e2021-11-01T00:00:00Zhttps://www.mdpi.com/1099-4300/23/11/1523https://doaj.org/toc/1099-4300In this work, first, we consider novel parameterized identities for the left and right part of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-analogue of Hermite–Hadamard inequality. Second, using these new parameterized identities, we give new parameterized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-trapezoid and parameterized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-midpoint type integral inequalities via <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-quasiconvex function. By changing values of parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula>, some new special cases from the main results are obtained and some known results are recaptured as well. Finally, at the end, an application to special means is given as well. This new research has the potential to establish new boundaries in comparative literature and some well-known implications. From an application perspective, the proposed research on the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-quasiconvex function has interesting results that illustrate the applicability and superiority of the results obtained.Humaira KalsoomMiguel Vivas-CortezMuhammad IdreesPraveen AgarwalMDPI AGarticlequantum calculuspost quantum calculusparameterized (<i>p</i>, <i>q</i>)-estimates for midpoint and trapezoidal type inequalities<i>η</i>-quasiconvexityScienceQAstrophysicsQB460-466PhysicsQC1-999ENEntropy, Vol 23, Iss 1523, p 1523 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
quantum calculus post quantum calculus parameterized (<i>p</i>, <i>q</i>)-estimates for midpoint and trapezoidal type inequalities <i>η</i>-quasiconvexity Science Q Astrophysics QB460-466 Physics QC1-999 |
spellingShingle |
quantum calculus post quantum calculus parameterized (<i>p</i>, <i>q</i>)-estimates for midpoint and trapezoidal type inequalities <i>η</i>-quasiconvexity Science Q Astrophysics QB460-466 Physics QC1-999 Humaira Kalsoom Miguel Vivas-Cortez Muhammad Idrees Praveen Agarwal New Parameterized Inequalities for <i>η</i>-Quasiconvex Functions via (<i>p</i>, <i>q</i>)-Calculus |
description |
In this work, first, we consider novel parameterized identities for the left and right part of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-analogue of Hermite–Hadamard inequality. Second, using these new parameterized identities, we give new parameterized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-trapezoid and parameterized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-midpoint type integral inequalities via <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-quasiconvex function. By changing values of parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula>, some new special cases from the main results are obtained and some known results are recaptured as well. Finally, at the end, an application to special means is given as well. This new research has the potential to establish new boundaries in comparative literature and some well-known implications. From an application perspective, the proposed research on the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-quasiconvex function has interesting results that illustrate the applicability and superiority of the results obtained. |
format |
article |
author |
Humaira Kalsoom Miguel Vivas-Cortez Muhammad Idrees Praveen Agarwal |
author_facet |
Humaira Kalsoom Miguel Vivas-Cortez Muhammad Idrees Praveen Agarwal |
author_sort |
Humaira Kalsoom |
title |
New Parameterized Inequalities for <i>η</i>-Quasiconvex Functions via (<i>p</i>, <i>q</i>)-Calculus |
title_short |
New Parameterized Inequalities for <i>η</i>-Quasiconvex Functions via (<i>p</i>, <i>q</i>)-Calculus |
title_full |
New Parameterized Inequalities for <i>η</i>-Quasiconvex Functions via (<i>p</i>, <i>q</i>)-Calculus |
title_fullStr |
New Parameterized Inequalities for <i>η</i>-Quasiconvex Functions via (<i>p</i>, <i>q</i>)-Calculus |
title_full_unstemmed |
New Parameterized Inequalities for <i>η</i>-Quasiconvex Functions via (<i>p</i>, <i>q</i>)-Calculus |
title_sort |
new parameterized inequalities for <i>η</i>-quasiconvex functions via (<i>p</i>, <i>q</i>)-calculus |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/84180b2a4c1846fa952bc556e690029e |
work_keys_str_mv |
AT humairakalsoom newparameterizedinequalitiesforiēiquasiconvexfunctionsviaipiiqicalculus AT miguelvivascortez newparameterizedinequalitiesforiēiquasiconvexfunctionsviaipiiqicalculus AT muhammadidrees newparameterizedinequalitiesforiēiquasiconvexfunctionsviaipiiqicalculus AT praveenagarwal newparameterizedinequalitiesforiēiquasiconvexfunctionsviaipiiqicalculus |
_version_ |
1718412295727480832 |