New Parameterized Inequalities for <i>η</i>-Quasiconvex Functions via (<i>p</i>, <i>q</i>)-Calculus

In this work, first, we consider novel parameterized identities for the left and right part of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,<...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Humaira Kalsoom, Miguel Vivas-Cortez, Muhammad Idrees, Praveen Agarwal
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/84180b2a4c1846fa952bc556e690029e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:84180b2a4c1846fa952bc556e690029e
record_format dspace
spelling oai:doaj.org-article:84180b2a4c1846fa952bc556e690029e2021-11-25T17:30:29ZNew Parameterized Inequalities for <i>η</i>-Quasiconvex Functions via (<i>p</i>, <i>q</i>)-Calculus10.3390/e231115231099-4300https://doaj.org/article/84180b2a4c1846fa952bc556e690029e2021-11-01T00:00:00Zhttps://www.mdpi.com/1099-4300/23/11/1523https://doaj.org/toc/1099-4300In this work, first, we consider novel parameterized identities for the left and right part of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-analogue of Hermite–Hadamard inequality. Second, using these new parameterized identities, we give new parameterized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-trapezoid and parameterized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-midpoint type integral inequalities via <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-quasiconvex function. By changing values of parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula>, some new special cases from the main results are obtained and some known results are recaptured as well. Finally, at the end, an application to special means is given as well. This new research has the potential to establish new boundaries in comparative literature and some well-known implications. From an application perspective, the proposed research on the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-quasiconvex function has interesting results that illustrate the applicability and superiority of the results obtained.Humaira KalsoomMiguel Vivas-CortezMuhammad IdreesPraveen AgarwalMDPI AGarticlequantum calculuspost quantum calculusparameterized (<i>p</i>, <i>q</i>)-estimates for midpoint and trapezoidal type inequalities<i>η</i>-quasiconvexityScienceQAstrophysicsQB460-466PhysicsQC1-999ENEntropy, Vol 23, Iss 1523, p 1523 (2021)
institution DOAJ
collection DOAJ
language EN
topic quantum calculus
post quantum calculus
parameterized (<i>p</i>, <i>q</i>)-estimates for midpoint and trapezoidal type inequalities
<i>η</i>-quasiconvexity
Science
Q
Astrophysics
QB460-466
Physics
QC1-999
spellingShingle quantum calculus
post quantum calculus
parameterized (<i>p</i>, <i>q</i>)-estimates for midpoint and trapezoidal type inequalities
<i>η</i>-quasiconvexity
Science
Q
Astrophysics
QB460-466
Physics
QC1-999
Humaira Kalsoom
Miguel Vivas-Cortez
Muhammad Idrees
Praveen Agarwal
New Parameterized Inequalities for <i>η</i>-Quasiconvex Functions via (<i>p</i>, <i>q</i>)-Calculus
description In this work, first, we consider novel parameterized identities for the left and right part of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-analogue of Hermite–Hadamard inequality. Second, using these new parameterized identities, we give new parameterized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-trapezoid and parameterized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-midpoint type integral inequalities via <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-quasiconvex function. By changing values of parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula>, some new special cases from the main results are obtained and some known results are recaptured as well. Finally, at the end, an application to special means is given as well. This new research has the potential to establish new boundaries in comparative literature and some well-known implications. From an application perspective, the proposed research on the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-quasiconvex function has interesting results that illustrate the applicability and superiority of the results obtained.
format article
author Humaira Kalsoom
Miguel Vivas-Cortez
Muhammad Idrees
Praveen Agarwal
author_facet Humaira Kalsoom
Miguel Vivas-Cortez
Muhammad Idrees
Praveen Agarwal
author_sort Humaira Kalsoom
title New Parameterized Inequalities for <i>η</i>-Quasiconvex Functions via (<i>p</i>, <i>q</i>)-Calculus
title_short New Parameterized Inequalities for <i>η</i>-Quasiconvex Functions via (<i>p</i>, <i>q</i>)-Calculus
title_full New Parameterized Inequalities for <i>η</i>-Quasiconvex Functions via (<i>p</i>, <i>q</i>)-Calculus
title_fullStr New Parameterized Inequalities for <i>η</i>-Quasiconvex Functions via (<i>p</i>, <i>q</i>)-Calculus
title_full_unstemmed New Parameterized Inequalities for <i>η</i>-Quasiconvex Functions via (<i>p</i>, <i>q</i>)-Calculus
title_sort new parameterized inequalities for <i>η</i>-quasiconvex functions via (<i>p</i>, <i>q</i>)-calculus
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/84180b2a4c1846fa952bc556e690029e
work_keys_str_mv AT humairakalsoom newparameterizedinequalitiesforiēiquasiconvexfunctionsviaipiiqicalculus
AT miguelvivascortez newparameterizedinequalitiesforiēiquasiconvexfunctionsviaipiiqicalculus
AT muhammadidrees newparameterizedinequalitiesforiēiquasiconvexfunctionsviaipiiqicalculus
AT praveenagarwal newparameterizedinequalitiesforiēiquasiconvexfunctionsviaipiiqicalculus
_version_ 1718412295727480832