Design and Antioxidant Properties of Bifunctional 2<i>H</i>-Imidazole-Derived Phenolic Compounds—A New Family of Effective Inhibitors for Oxidative Stress-Associated Destructive Processes

The synthesis of inhibitors for oxidative stress-associated destructive processes based on 2<i>H</i>-imidazole-derived phenolic compounds affording the bifunctional 2<i>H</i>-imidazole-derived phenolic compounds in good-to-excellent yields was reported. In particular, a serie...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Elena L. Gerasimova, Elena R. Gazizullina, Maria V. Borisova, Dinara I. Igdisanova, Egor A. Nikiforov, Timofey D. Moseev, Mikhail V. Varaksin, Oleg N. Chupakhin, Valery N. Charushin, Alla V. Ivanova
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/8420786c125c436ca4042283a18a849f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The synthesis of inhibitors for oxidative stress-associated destructive processes based on 2<i>H</i>-imidazole-derived phenolic compounds affording the bifunctional 2<i>H</i>-imidazole-derived phenolic compounds in good-to-excellent yields was reported. In particular, a series of bifunctional organic molecules of the 5-aryl-2<i>H</i>-imidazole family of various architectures bearing both electron-donating and electron-withdrawing substituents in the aryl fragment along with the different arrangements of the hydroxy groups in the polyphenol moiety, namely derivatives of phloroglucinol, pyrogallol, hydroxyquinol, including previously unknown water-soluble molecules, were studied. The structural and antioxidant properties of these bifunctional 5-aryl-2<i>H</i>-imidazoles were comprehensively studied. The redox transformations of the synthesized compounds were carried out. The integrated approach based on single and mixed mechanisms of antioxidant action, namely the AOC, ARC, Folin, and DPPH assays, were applied to estimate antioxidant activities. The relationship “structure-antioxidant properties” was established for each of the antioxidant action mechanisms. The conjugation effect was shown to result in a decrease in the mobility of the hydrogen atom, thus complicating the process of electron transfer in nearly all cases. On the contrary, the conjugation in imidazolyl substituted phloroglucinols was found to enhance their activity through the hydrogen transfer mechanism. Imidazole-derived polyphenolic compounds bearing the most electron-withdrawing functionality, namely the nitro group, were established to possess the higher values for both antioxidant and antiradical capacities. It was demonstrated that in the case of phloroglucinol derivatives, the conjugation effect resulted in a significant increase in the antiradical capacity (ARC) for a whole family of the considered 2<i>H</i>-imidazole-derived phenolic compounds in comparison with the corresponding unsubstituted phenols. Particularly, conjugation of the polyphenolic subunit with 2,2-dimethyl-5-(4-nitrophenyl)-2<i>H</i>-imidazol-4-yl fragment was shown to increase ARC from 2.26 to 5.16 (10<sup>4</sup> mol-eq/L). This means that the considered family of compounds is capable of exhibiting an antioxidant activity via transferring a hydrogen atom, exceeding the activity of known natural polyphenolic compounds.