Design and Antioxidant Properties of Bifunctional 2<i>H</i>-Imidazole-Derived Phenolic Compounds—A New Family of Effective Inhibitors for Oxidative Stress-Associated Destructive Processes
The synthesis of inhibitors for oxidative stress-associated destructive processes based on 2<i>H</i>-imidazole-derived phenolic compounds affording the bifunctional 2<i>H</i>-imidazole-derived phenolic compounds in good-to-excellent yields was reported. In particular, a serie...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8420786c125c436ca4042283a18a849f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8420786c125c436ca4042283a18a849f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8420786c125c436ca4042283a18a849f2021-11-11T18:31:24ZDesign and Antioxidant Properties of Bifunctional 2<i>H</i>-Imidazole-Derived Phenolic Compounds—A New Family of Effective Inhibitors for Oxidative Stress-Associated Destructive Processes10.3390/molecules262165341420-3049https://doaj.org/article/8420786c125c436ca4042283a18a849f2021-10-01T00:00:00Zhttps://www.mdpi.com/1420-3049/26/21/6534https://doaj.org/toc/1420-3049The synthesis of inhibitors for oxidative stress-associated destructive processes based on 2<i>H</i>-imidazole-derived phenolic compounds affording the bifunctional 2<i>H</i>-imidazole-derived phenolic compounds in good-to-excellent yields was reported. In particular, a series of bifunctional organic molecules of the 5-aryl-2<i>H</i>-imidazole family of various architectures bearing both electron-donating and electron-withdrawing substituents in the aryl fragment along with the different arrangements of the hydroxy groups in the polyphenol moiety, namely derivatives of phloroglucinol, pyrogallol, hydroxyquinol, including previously unknown water-soluble molecules, were studied. The structural and antioxidant properties of these bifunctional 5-aryl-2<i>H</i>-imidazoles were comprehensively studied. The redox transformations of the synthesized compounds were carried out. The integrated approach based on single and mixed mechanisms of antioxidant action, namely the AOC, ARC, Folin, and DPPH assays, were applied to estimate antioxidant activities. The relationship “structure-antioxidant properties” was established for each of the antioxidant action mechanisms. The conjugation effect was shown to result in a decrease in the mobility of the hydrogen atom, thus complicating the process of electron transfer in nearly all cases. On the contrary, the conjugation in imidazolyl substituted phloroglucinols was found to enhance their activity through the hydrogen transfer mechanism. Imidazole-derived polyphenolic compounds bearing the most electron-withdrawing functionality, namely the nitro group, were established to possess the higher values for both antioxidant and antiradical capacities. It was demonstrated that in the case of phloroglucinol derivatives, the conjugation effect resulted in a significant increase in the antiradical capacity (ARC) for a whole family of the considered 2<i>H</i>-imidazole-derived phenolic compounds in comparison with the corresponding unsubstituted phenols. Particularly, conjugation of the polyphenolic subunit with 2,2-dimethyl-5-(4-nitrophenyl)-2<i>H</i>-imidazol-4-yl fragment was shown to increase ARC from 2.26 to 5.16 (10<sup>4</sup> mol-eq/L). This means that the considered family of compounds is capable of exhibiting an antioxidant activity via transferring a hydrogen atom, exceeding the activity of known natural polyphenolic compounds.Elena L. GerasimovaElena R. GazizullinaMaria V. BorisovaDinara I. IgdisanovaEgor A. NikiforovTimofey D. MoseevMikhail V. VaraksinOleg N. ChupakhinValery N. CharushinAlla V. IvanovaMDPI AGarticle2<i>H</i>-imidazolepolyphenolsantioxidant capacityantiradical capacityOrganic chemistryQD241-441ENMolecules, Vol 26, Iss 6534, p 6534 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
2<i>H</i>-imidazole polyphenols antioxidant capacity antiradical capacity Organic chemistry QD241-441 |
spellingShingle |
2<i>H</i>-imidazole polyphenols antioxidant capacity antiradical capacity Organic chemistry QD241-441 Elena L. Gerasimova Elena R. Gazizullina Maria V. Borisova Dinara I. Igdisanova Egor A. Nikiforov Timofey D. Moseev Mikhail V. Varaksin Oleg N. Chupakhin Valery N. Charushin Alla V. Ivanova Design and Antioxidant Properties of Bifunctional 2<i>H</i>-Imidazole-Derived Phenolic Compounds—A New Family of Effective Inhibitors for Oxidative Stress-Associated Destructive Processes |
description |
The synthesis of inhibitors for oxidative stress-associated destructive processes based on 2<i>H</i>-imidazole-derived phenolic compounds affording the bifunctional 2<i>H</i>-imidazole-derived phenolic compounds in good-to-excellent yields was reported. In particular, a series of bifunctional organic molecules of the 5-aryl-2<i>H</i>-imidazole family of various architectures bearing both electron-donating and electron-withdrawing substituents in the aryl fragment along with the different arrangements of the hydroxy groups in the polyphenol moiety, namely derivatives of phloroglucinol, pyrogallol, hydroxyquinol, including previously unknown water-soluble molecules, were studied. The structural and antioxidant properties of these bifunctional 5-aryl-2<i>H</i>-imidazoles were comprehensively studied. The redox transformations of the synthesized compounds were carried out. The integrated approach based on single and mixed mechanisms of antioxidant action, namely the AOC, ARC, Folin, and DPPH assays, were applied to estimate antioxidant activities. The relationship “structure-antioxidant properties” was established for each of the antioxidant action mechanisms. The conjugation effect was shown to result in a decrease in the mobility of the hydrogen atom, thus complicating the process of electron transfer in nearly all cases. On the contrary, the conjugation in imidazolyl substituted phloroglucinols was found to enhance their activity through the hydrogen transfer mechanism. Imidazole-derived polyphenolic compounds bearing the most electron-withdrawing functionality, namely the nitro group, were established to possess the higher values for both antioxidant and antiradical capacities. It was demonstrated that in the case of phloroglucinol derivatives, the conjugation effect resulted in a significant increase in the antiradical capacity (ARC) for a whole family of the considered 2<i>H</i>-imidazole-derived phenolic compounds in comparison with the corresponding unsubstituted phenols. Particularly, conjugation of the polyphenolic subunit with 2,2-dimethyl-5-(4-nitrophenyl)-2<i>H</i>-imidazol-4-yl fragment was shown to increase ARC from 2.26 to 5.16 (10<sup>4</sup> mol-eq/L). This means that the considered family of compounds is capable of exhibiting an antioxidant activity via transferring a hydrogen atom, exceeding the activity of known natural polyphenolic compounds. |
format |
article |
author |
Elena L. Gerasimova Elena R. Gazizullina Maria V. Borisova Dinara I. Igdisanova Egor A. Nikiforov Timofey D. Moseev Mikhail V. Varaksin Oleg N. Chupakhin Valery N. Charushin Alla V. Ivanova |
author_facet |
Elena L. Gerasimova Elena R. Gazizullina Maria V. Borisova Dinara I. Igdisanova Egor A. Nikiforov Timofey D. Moseev Mikhail V. Varaksin Oleg N. Chupakhin Valery N. Charushin Alla V. Ivanova |
author_sort |
Elena L. Gerasimova |
title |
Design and Antioxidant Properties of Bifunctional 2<i>H</i>-Imidazole-Derived Phenolic Compounds—A New Family of Effective Inhibitors for Oxidative Stress-Associated Destructive Processes |
title_short |
Design and Antioxidant Properties of Bifunctional 2<i>H</i>-Imidazole-Derived Phenolic Compounds—A New Family of Effective Inhibitors for Oxidative Stress-Associated Destructive Processes |
title_full |
Design and Antioxidant Properties of Bifunctional 2<i>H</i>-Imidazole-Derived Phenolic Compounds—A New Family of Effective Inhibitors for Oxidative Stress-Associated Destructive Processes |
title_fullStr |
Design and Antioxidant Properties of Bifunctional 2<i>H</i>-Imidazole-Derived Phenolic Compounds—A New Family of Effective Inhibitors for Oxidative Stress-Associated Destructive Processes |
title_full_unstemmed |
Design and Antioxidant Properties of Bifunctional 2<i>H</i>-Imidazole-Derived Phenolic Compounds—A New Family of Effective Inhibitors for Oxidative Stress-Associated Destructive Processes |
title_sort |
design and antioxidant properties of bifunctional 2<i>h</i>-imidazole-derived phenolic compounds—a new family of effective inhibitors for oxidative stress-associated destructive processes |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/8420786c125c436ca4042283a18a849f |
work_keys_str_mv |
AT elenalgerasimova designandantioxidantpropertiesofbifunctional2ihiimidazolederivedphenoliccompoundsanewfamilyofeffectiveinhibitorsforoxidativestressassociateddestructiveprocesses AT elenargazizullina designandantioxidantpropertiesofbifunctional2ihiimidazolederivedphenoliccompoundsanewfamilyofeffectiveinhibitorsforoxidativestressassociateddestructiveprocesses AT mariavborisova designandantioxidantpropertiesofbifunctional2ihiimidazolederivedphenoliccompoundsanewfamilyofeffectiveinhibitorsforoxidativestressassociateddestructiveprocesses AT dinaraiigdisanova designandantioxidantpropertiesofbifunctional2ihiimidazolederivedphenoliccompoundsanewfamilyofeffectiveinhibitorsforoxidativestressassociateddestructiveprocesses AT egoranikiforov designandantioxidantpropertiesofbifunctional2ihiimidazolederivedphenoliccompoundsanewfamilyofeffectiveinhibitorsforoxidativestressassociateddestructiveprocesses AT timofeydmoseev designandantioxidantpropertiesofbifunctional2ihiimidazolederivedphenoliccompoundsanewfamilyofeffectiveinhibitorsforoxidativestressassociateddestructiveprocesses AT mikhailvvaraksin designandantioxidantpropertiesofbifunctional2ihiimidazolederivedphenoliccompoundsanewfamilyofeffectiveinhibitorsforoxidativestressassociateddestructiveprocesses AT olegnchupakhin designandantioxidantpropertiesofbifunctional2ihiimidazolederivedphenoliccompoundsanewfamilyofeffectiveinhibitorsforoxidativestressassociateddestructiveprocesses AT valeryncharushin designandantioxidantpropertiesofbifunctional2ihiimidazolederivedphenoliccompoundsanewfamilyofeffectiveinhibitorsforoxidativestressassociateddestructiveprocesses AT allavivanova designandantioxidantpropertiesofbifunctional2ihiimidazolederivedphenoliccompoundsanewfamilyofeffectiveinhibitorsforoxidativestressassociateddestructiveprocesses |
_version_ |
1718431832890933248 |