Study of hydraulic fracture growth behavior in heterogeneous tight sandstone formations using CT scanning and acoustic emission monitoring

Abstract Tortuous hydraulic fractures (HFs) are likely to be created in heterogeneous formations such as conglomerates, which may cause sand plugging, ultimately resulting in poor stimulation efficiency. This study aims to explore HF growth behavior in conglomerate through laboratory fracturing expe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nai-Zhen Liu, Yu-Shi Zou, Xin-Fang Ma, Ning Li, Shan Wu
Formato: article
Lenguaje:EN
Publicado: KeAi Communications Co., Ltd. 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/8443e869db404d4d942601b714ea0575
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Tortuous hydraulic fractures (HFs) are likely to be created in heterogeneous formations such as conglomerates, which may cause sand plugging, ultimately resulting in poor stimulation efficiency. This study aims to explore HF growth behavior in conglomerate through laboratory fracturing experiments under true tri-axial stresses combined with computed tomography scanning and acoustic emission (AE) monitoring. The effects of gravel size, horizontal differential stress, and AE focal mechanisms were examined. Especially, the injection pressure and the AE response features during HF initiation and propagation in conglomerate were analyzed. Simple HFs with narrow microfractures are created in conglomerate when the gravels are considerably smaller than the specimen, whereas complex fractures are created when the gravels are similar in size to the specimen, even under high horizontal differential stresses. Breakdown pressure and AE rates are high when a HF is initiated from the high-strength gravel. A large pressure decline after the breakdown may indicate the creation of a planar and wide HF. Analyzing the focal mechanism indicates that the shear mechanism generally dominates with an increase in the HF complexity. Tensile events are likely to occur during HF initiation and are located around the wellbore. Shear events occur mainly around the nonplanar and complex matrix/gravel interfaces.