Utilising Partial Momentum Refreshment in Separable Shadow Hamiltonian Hybrid Monte Carlo

Sampling using integrator-dependent shadow Hamiltonian’s has been shown to produce improved sampling properties relative to Hamiltonian Monte Carlo. The shadow Hamiltonian’s are typically non-separable, requiring the expensive generation of momenta, with the recent trend being...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wilson Tsakane Mongwe, Rendani Mbuvha, Tshilidzi Marwala
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/84772ccb6be84cceb01509d3e9f1f426
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:84772ccb6be84cceb01509d3e9f1f426
record_format dspace
spelling oai:doaj.org-article:84772ccb6be84cceb01509d3e9f1f4262021-11-17T00:00:33ZUtilising Partial Momentum Refreshment in Separable Shadow Hamiltonian Hybrid Monte Carlo2169-353610.1109/ACCESS.2021.3126812https://doaj.org/article/84772ccb6be84cceb01509d3e9f1f4262021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9610024/https://doaj.org/toc/2169-3536Sampling using integrator-dependent shadow Hamiltonian’s has been shown to produce improved sampling properties relative to Hamiltonian Monte Carlo. The shadow Hamiltonian’s are typically non-separable, requiring the expensive generation of momenta, with the recent trend being to utilise partial momentum refreshment. Separable Shadow Hamiltonian Hybrid Monte Carlo (S2HMC) employs a canonical transformation which results in the Hamiltonian being separable and makes use of a processed leapfrog integrator. In this work, we combine the benefit of sampling using S2HMC with partial momentum refreshment to create the Separable Shadow Hamiltonian Hybrid Monte Carlo with Partial Momentum Refreshment (PS2HMC) algorithm which leaves the target distribution invariant. Numerical experiments across various targets show that the proposed algorithm outperforms S2HMC and Shadow Hamiltonian Monte Carlo with partial momentum refreshment. Comprehensive analysis is performed on the Banana shaped distribution, multivariate Gaussian distributions of various dimensions, Bayesian logistic regression and Bayesian neural networks.Wilson Tsakane MongweRendani MbuvhaTshilidzi MarwalaIEEEarticleBayesian neural networksBayesian logistic regressionHamiltonian Monte Carlopartial momentum refreshmentshadow Hamiltonian Monte CarloMarkov Chain Monte CarloElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 151235-151244 (2021)
institution DOAJ
collection DOAJ
language EN
topic Bayesian neural networks
Bayesian logistic regression
Hamiltonian Monte Carlo
partial momentum refreshment
shadow Hamiltonian Monte Carlo
Markov Chain Monte Carlo
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
spellingShingle Bayesian neural networks
Bayesian logistic regression
Hamiltonian Monte Carlo
partial momentum refreshment
shadow Hamiltonian Monte Carlo
Markov Chain Monte Carlo
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Wilson Tsakane Mongwe
Rendani Mbuvha
Tshilidzi Marwala
Utilising Partial Momentum Refreshment in Separable Shadow Hamiltonian Hybrid Monte Carlo
description Sampling using integrator-dependent shadow Hamiltonian’s has been shown to produce improved sampling properties relative to Hamiltonian Monte Carlo. The shadow Hamiltonian’s are typically non-separable, requiring the expensive generation of momenta, with the recent trend being to utilise partial momentum refreshment. Separable Shadow Hamiltonian Hybrid Monte Carlo (S2HMC) employs a canonical transformation which results in the Hamiltonian being separable and makes use of a processed leapfrog integrator. In this work, we combine the benefit of sampling using S2HMC with partial momentum refreshment to create the Separable Shadow Hamiltonian Hybrid Monte Carlo with Partial Momentum Refreshment (PS2HMC) algorithm which leaves the target distribution invariant. Numerical experiments across various targets show that the proposed algorithm outperforms S2HMC and Shadow Hamiltonian Monte Carlo with partial momentum refreshment. Comprehensive analysis is performed on the Banana shaped distribution, multivariate Gaussian distributions of various dimensions, Bayesian logistic regression and Bayesian neural networks.
format article
author Wilson Tsakane Mongwe
Rendani Mbuvha
Tshilidzi Marwala
author_facet Wilson Tsakane Mongwe
Rendani Mbuvha
Tshilidzi Marwala
author_sort Wilson Tsakane Mongwe
title Utilising Partial Momentum Refreshment in Separable Shadow Hamiltonian Hybrid Monte Carlo
title_short Utilising Partial Momentum Refreshment in Separable Shadow Hamiltonian Hybrid Monte Carlo
title_full Utilising Partial Momentum Refreshment in Separable Shadow Hamiltonian Hybrid Monte Carlo
title_fullStr Utilising Partial Momentum Refreshment in Separable Shadow Hamiltonian Hybrid Monte Carlo
title_full_unstemmed Utilising Partial Momentum Refreshment in Separable Shadow Hamiltonian Hybrid Monte Carlo
title_sort utilising partial momentum refreshment in separable shadow hamiltonian hybrid monte carlo
publisher IEEE
publishDate 2021
url https://doaj.org/article/84772ccb6be84cceb01509d3e9f1f426
work_keys_str_mv AT wilsontsakanemongwe utilisingpartialmomentumrefreshmentinseparableshadowhamiltonianhybridmontecarlo
AT rendanimbuvha utilisingpartialmomentumrefreshmentinseparableshadowhamiltonianhybridmontecarlo
AT tshilidzimarwala utilisingpartialmomentumrefreshmentinseparableshadowhamiltonianhybridmontecarlo
_version_ 1718426060192743424