Comparison of Surface Functionalization of PLGA Composite to Immobilize Extracellular Vesicles
Endothelialization by materials provides a promising approach for the rapid re-endothelialization of a cardiovascular implantation. Although previous studies have focused on improving endothelialization through the immobilization of bioactive molecules onto the surface of biodegradable implants, com...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8494b2a25a30467f888f4b5e45e2a35c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Endothelialization by materials provides a promising approach for the rapid re-endothelialization of a cardiovascular implantation. Although previous studies have focused on improving endothelialization through the immobilization of bioactive molecules onto the surface of biodegradable implants, comparative studies of effective surface modification have not yet been reported. Here, we conducted a comparative study on the surface modification of poly(lactide-co-glycolide) (PLGA)-based composites to graft mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) using three different materials, fibronectin (FN), polyethylenimine (PEI), and polydopamine (PDA), which have different bond strengths of ligand–receptor interaction, ionic bond, and covalent bond, respectively. Further in vitro analysis exhibited that MSC-EVs released from all modified films sustainably, but the MSC-EVs grafted onto the surface coated with PEI are more effective than other groups in increasing angiogenesis and reducing the inflammatory responses in endothelial cells. Therefore, the overall results demonstrated that PEI is a desirable coating reagent for the immobilization of MSC-EVs on the surface of biodegradable implants. |
---|