Hyperspectral Target Detection with an Auxiliary Generative Adversarial Network
In recent years, the deep neural network has shown a strong presence in classification tasks and its effectiveness has been well proved. However, the framework of DNN usually requires a large number of samples. Compared to the training sets in classification tasks, the training sets for the target d...
Guardado en:
Autores principales: | Yanlong Gao, Yan Feng, Xumin Yu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/84a7aae24c4041d7bdd46d2c7e54e0d2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
por: Chuan Du, et al.
Publicado: (2021) -
Road Surface Crack Detection Method Based on Conditional Generative Adversarial Networks
por: Anastasiia Kyslytsyna, et al.
Publicado: (2021) -
Detection and Classification of Rice Infestation with Rice Leaf Folder (<i>Cnaphalocrocis medinalis</i>) Using Hyperspectral Imaging Techniques
por: Gui-Chou Liang, et al.
Publicado: (2021) -
SAR Target Detection Based on Domain Adaptive Faster R-CNN with Small Training Data Size
por: Yuchen Guo, et al.
Publicado: (2021) -
Textured Mesh Generation Using Multi-View and Multi-Source Supervision and Generative Adversarial Networks
por: Mingyun Wen, et al.
Publicado: (2021)