Learning Multi-Granularity Neural Network Encoding Image Classification Using DCNNs for Easter Africa Community Countries
Remote sensing scene classification is a fundamental responsibility of earth observation, aiming at identifying information granular for land cover classification. The multi-granular land use for multi-source remotely sensed image categories is now a principal task in remote sensing data augmentatio...
Guardado en:
Autores principales: | Musabe Jean Bosco, Guoyin Wang, Yves Hategekimana |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/84c1802afbee468fae2d2069bf843364 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Compressed Sensing and Stacked Multi-Granularity Convolution Denoising Auto-Encoder
por: Chuang Liang, et al.
Publicado: (2021) -
Multisensor Land Cover Classification With Sparsely Annotated Data Based on Convolutional Neural Networks and Self-Distillation
por: Yawogan Jean Eudes Gbodjo, et al.
Publicado: (2021) -
Discerning the painter’s hand: machine learning on surface topography
por: F. Ji, et al.
Publicado: (2021) -
Comparative Analysis of Feature Extraction and Pixel-based Classification of High-Resolution Satellite Images Using Geospatial Techniques
por: Musleh Alaa Adnan, et al.
Publicado: (2021) -
Mapping Relict Charcoal Hearths in New England Using Deep Convolutional Neural Networks and LiDAR Data
por: Ji Won Suh, et al.
Publicado: (2021)