Analysis of the Possibilities of Tire-Defect Inspection Based on Unsupervised Learning and Deep Learning
At present, inspection systems process visual data captured by cameras, with deep learning approaches applied to detect defects. Defect detection results usually have an accuracy higher than 94%. Real-life applications, however, are not very common. In this paper, we describe the development of a ti...
Guardado en:
Autores principales: | Ivan Kuric, Jaromír Klarák, Milan Sága, Miroslav Císar, Adrián Hajdučík, Dariusz Wiecek |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/84cf6c3e3cb34491b94582f38c7a3de8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Analysis of Laser Sensors and Camera Vision in the Shoe Position Inspection System
por: Jaromír Klarák, et al.
Publicado: (2021) -
Automatic Unsupervised Fabric Defect Detection Based on Self-Feature Comparison
por: Zhengrui Peng, et al.
Publicado: (2021) -
Blind Image Super Resolution Using Deep Unsupervised Learning
por: Kazuhiro Yamawaki, et al.
Publicado: (2021) -
Enhancing unsupervised medical entity linking with multi-instance learning
por: Cheng Yan, et al.
Publicado: (2021) -
Towards Using Unsupervised Learning for Comparing Traditional and Synchronous Online Learning in Assessing Students’ Academic Performance
por: Mariana-Ioana Maier, et al.
Publicado: (2021)