Analysis of the Possibilities of Tire-Defect Inspection Based on Unsupervised Learning and Deep Learning

At present, inspection systems process visual data captured by cameras, with deep learning approaches applied to detect defects. Defect detection results usually have an accuracy higher than 94%. Real-life applications, however, are not very common. In this paper, we describe the development of a ti...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ivan Kuric, Jaromír Klarák, Milan Sága, Miroslav Císar, Adrián Hajdučík, Dariusz Wiecek
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/84cf6c3e3cb34491b94582f38c7a3de8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares