Analysis of the Possibilities of Tire-Defect Inspection Based on Unsupervised Learning and Deep Learning
At present, inspection systems process visual data captured by cameras, with deep learning approaches applied to detect defects. Defect detection results usually have an accuracy higher than 94%. Real-life applications, however, are not very common. In this paper, we describe the development of a ti...
Enregistré dans:
Auteurs principaux: | Ivan Kuric, Jaromír Klarák, Milan Sága, Miroslav Císar, Adrián Hajdučík, Dariusz Wiecek |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/84cf6c3e3cb34491b94582f38c7a3de8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Analysis of Laser Sensors and Camera Vision in the Shoe Position Inspection System
par: Jaromír Klarák, et autres
Publié: (2021) -
Automatic Unsupervised Fabric Defect Detection Based on Self-Feature Comparison
par: Zhengrui Peng, et autres
Publié: (2021) -
Blind Image Super Resolution Using Deep Unsupervised Learning
par: Kazuhiro Yamawaki, et autres
Publié: (2021) -
Enhancing unsupervised medical entity linking with multi-instance learning
par: Cheng Yan, et autres
Publié: (2021) -
Towards Using Unsupervised Learning for Comparing Traditional and Synchronous Online Learning in Assessing Students’ Academic Performance
par: Mariana-Ioana Maier, et autres
Publié: (2021)