Machine learning with physicochemical relationships: solubility prediction in organic solvents and water

Accurate prediction of solubility represents a challenge for traditional computational approaches due to the complex nature of phenomena involved. Here the authors report a successful approach to solubility prediction in organic solvents and water using combination of machine learning and computatio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Samuel Boobier, David R. J. Hose, A. John Blacker, Bao N. Nguyen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/84cf9b720ddc4f8cb842ae7b8aa0604f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Accurate prediction of solubility represents a challenge for traditional computational approaches due to the complex nature of phenomena involved. Here the authors report a successful approach to solubility prediction in organic solvents and water using combination of machine learning and computational chemistry.