Machine learning with physicochemical relationships: solubility prediction in organic solvents and water

Accurate prediction of solubility represents a challenge for traditional computational approaches due to the complex nature of phenomena involved. Here the authors report a successful approach to solubility prediction in organic solvents and water using combination of machine learning and computatio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Samuel Boobier, David R. J. Hose, A. John Blacker, Bao N. Nguyen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/84cf9b720ddc4f8cb842ae7b8aa0604f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:84cf9b720ddc4f8cb842ae7b8aa0604f
record_format dspace
spelling oai:doaj.org-article:84cf9b720ddc4f8cb842ae7b8aa0604f2021-12-02T15:37:19ZMachine learning with physicochemical relationships: solubility prediction in organic solvents and water10.1038/s41467-020-19594-z2041-1723https://doaj.org/article/84cf9b720ddc4f8cb842ae7b8aa0604f2020-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19594-zhttps://doaj.org/toc/2041-1723Accurate prediction of solubility represents a challenge for traditional computational approaches due to the complex nature of phenomena involved. Here the authors report a successful approach to solubility prediction in organic solvents and water using combination of machine learning and computational chemistry.Samuel BoobierDavid R. J. HoseA. John BlackerBao N. NguyenNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Samuel Boobier
David R. J. Hose
A. John Blacker
Bao N. Nguyen
Machine learning with physicochemical relationships: solubility prediction in organic solvents and water
description Accurate prediction of solubility represents a challenge for traditional computational approaches due to the complex nature of phenomena involved. Here the authors report a successful approach to solubility prediction in organic solvents and water using combination of machine learning and computational chemistry.
format article
author Samuel Boobier
David R. J. Hose
A. John Blacker
Bao N. Nguyen
author_facet Samuel Boobier
David R. J. Hose
A. John Blacker
Bao N. Nguyen
author_sort Samuel Boobier
title Machine learning with physicochemical relationships: solubility prediction in organic solvents and water
title_short Machine learning with physicochemical relationships: solubility prediction in organic solvents and water
title_full Machine learning with physicochemical relationships: solubility prediction in organic solvents and water
title_fullStr Machine learning with physicochemical relationships: solubility prediction in organic solvents and water
title_full_unstemmed Machine learning with physicochemical relationships: solubility prediction in organic solvents and water
title_sort machine learning with physicochemical relationships: solubility prediction in organic solvents and water
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/84cf9b720ddc4f8cb842ae7b8aa0604f
work_keys_str_mv AT samuelboobier machinelearningwithphysicochemicalrelationshipssolubilitypredictioninorganicsolventsandwater
AT davidrjhose machinelearningwithphysicochemicalrelationshipssolubilitypredictioninorganicsolventsandwater
AT ajohnblacker machinelearningwithphysicochemicalrelationshipssolubilitypredictioninorganicsolventsandwater
AT baonnguyen machinelearningwithphysicochemicalrelationshipssolubilitypredictioninorganicsolventsandwater
_version_ 1718386243882975232