Machine learning with physicochemical relationships: solubility prediction in organic solvents and water
Accurate prediction of solubility represents a challenge for traditional computational approaches due to the complex nature of phenomena involved. Here the authors report a successful approach to solubility prediction in organic solvents and water using combination of machine learning and computatio...
Guardado en:
Autores principales: | Samuel Boobier, David R. J. Hose, A. John Blacker, Bao N. Nguyen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/84cf9b720ddc4f8cb842ae7b8aa0604f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
NIR-Prediction of water-soluble carbohydrate in white clover and its genetic relationship with cold tolerance
por: Inostroza,Luis, et al.
Publicado: (2017) -
Solubility of Luteolin and Other Polyphenolic Compounds in Water, Nonpolar, Polar Aprotic and Protic Solvents by Applying FTIR/HPLC
por: Saša Rajhard, et al.
Publicado: (2021) -
EFFECT OF THE ORGANIC SOLVENT ON THE INTERFACIAL MICROPOLARITY OF AOT -WATER REVERSE MICELLES
por: ABUIN,E, et al.
Publicado: (2007) -
Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships
por: Chia-Yi Cheng, et al.
Publicado: (2021) -
Organic Solvent Nanofiltration of Water-in-Oil Pickering Emulsions—What Influences Permeability?
por: Maresa Vivien Kempin, et al.
Publicado: (2021)