Noise reduction in X-ray photon correlation spectroscopy with convolutional neural networks encoder–decoder models
Abstract Like other experimental techniques, X-ray photon correlation spectroscopy is subject to various kinds of noise. Random and correlated fluctuations and heterogeneities can be present in a two-time correlation function and obscure the information about the intrinsic dynamics of a sample. Simu...
Guardado en:
Autores principales: | Tatiana Konstantinova, Lutz Wiegart, Maksim Rakitin, Anthony M. DeGennaro, Andi M. Barbour |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/84de9308085047b997ea448e9d21a2de |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Channel Noise Optimization of Polar Codes Decoding Based on a Convolutional Neural Network
por: Ming Yan, et al.
Publicado: (2021) -
Decoding the Equine Genome: Lessons from ENCODE
por: Sichong Peng, et al.
Publicado: (2021) -
Split-pulse X-ray photon correlation spectroscopy with seeded X-rays from X-ray laser to study atomic-level dynamics
por: Yuya Shinohara, et al.
Publicado: (2020) -
A Dense Encoder–Decoder Network with Feedback Connections for Pan-Sharpening
por: Weisheng Li, et al.
Publicado: (2021) -
Encoder-Decoder Multi-Step Trajectory Prediction Technology Based on LSTM
por: Li Qingyong, He Bing, Zhang Xianyang, Zhu Xiaoyu, Liu Gang
Publicado: (2021)