Compositionally restricted attention-based network for materials property predictions
Abstract In this paper, we demonstrate an application of the Transformer self-attention mechanism in the context of materials science. Our network, the Compositionally Restricted Attention-Based network (CrabNet), explores the area of structure-agnostic materials property predictions when only a che...
Guardado en:
Autores principales: | Anthony Yu-Tung Wang, Steven K. Kauwe, Ryan J. Murdock, Taylor D. Sparks |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/84ef20134dd54902b0ccba0b112204ea |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine learning for perovskite materials design and discovery
por: Qiuling Tao, et al.
Publicado: (2021) -
Benchmarking graph neural networks for materials chemistry
por: Victor Fung, et al.
Publicado: (2021) -
Symmetry-aware recursive image similarity exploration for materials microscopy
por: Tri N. M. Nguyen, et al.
Publicado: (2021) -
Materials information and mechanical response of TRIP/TWIP Ti alloys
por: Guohua Zhao, et al.
Publicado: (2021) -
Exploiting the quantum mechanically derived force field for functional materials simulations
por: Alexey Odinokov, et al.
Publicado: (2021)