Text-to-speech system for low-resource language using cross-lingual transfer learning and data augmentation
Abstract Deep learning techniques are currently being applied in automated text-to-speech (TTS) systems, resulting in significant improvements in performance. However, these methods require large amounts of text-speech paired data for model training, and collecting this data is costly. Therefore, in...
Guardado en:
Autores principales: | Zolzaya Byambadorj, Ryota Nishimura, Altangerel Ayush, Kengo Ohta, Norihide Kitaoka |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/84f582599e30418fa5395ab20605d377 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Full waveform inversion for bore reconstruction of woodwind-like instruments
por: Ernoult Augustin, et al.
Publicado: (2021) -
Multi-frequency sonoreactor characterisation in the frequency domain using a semi-empirical bubbly liquid model
por: Jin Kiat Chu, et al.
Publicado: (2021) -
Understanding diffusion layer agitation by cavitation in electroplating based on high-speed monitoring
por: Taisuke Nozawa, et al.
Publicado: (2021) -
Towards modelling active sound localisation based on Bayesian inference in a static environment
por: McLachlan Glen, et al.
Publicado: (2021) -
A Hybrid Speech Enhancement Algorithm for Voice Assistance Application
por: Jenifa Gnanamanickam, et al.
Publicado: (2021)