Dam failure peak outflow prediction through GEP-SVM meta models and uncertainty analysis
Accurate prediction of a breached dam's peak outflow is a significant factor for flood risk analysis. In this study, the capability of Support Vector Machine and Kernel Extreme Learning Machine as kernel-based approaches and Gene Expression Programming method was assessed in breached dam peak o...
Guardado en:
Autores principales: | Mohammad Nobarinia, Farhoud Kalateh, Vahid Nourani, Alireza Babaeian Amini |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8528cb1616744a8b97cab1a231f3cfde |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Study on the influence of infiltration on flood propagation with different peak shape coefficients and duration
por: Jingming Hou, et al.
Publicado: (2021) -
Water for life making it happen.
Publicado: (2005) -
El agua y la vida : ¡Aprende jugando! /
por: Gutiérrez Aranzeta, Carlos, et al.
Publicado: (2007) -
Remote-sensing-based algorithms for water quality monitoring in Olushandja Dam, north-central Namibia
por: Taimi S. Kapalanga, et al.
Publicado: (2021) -
A novel framework for prediction of dam deformation based on extreme learning machine and Lévy flight bat algorithm
por: Youliang Chen, et al.
Publicado: (2021)