Dam failure peak outflow prediction through GEP-SVM meta models and uncertainty analysis
Accurate prediction of a breached dam's peak outflow is a significant factor for flood risk analysis. In this study, the capability of Support Vector Machine and Kernel Extreme Learning Machine as kernel-based approaches and Gene Expression Programming method was assessed in breached dam peak o...
Enregistré dans:
Auteurs principaux: | Mohammad Nobarinia, Farhoud Kalateh, Vahid Nourani, Alireza Babaeian Amini |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IWA Publishing
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/8528cb1616744a8b97cab1a231f3cfde |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Study on the influence of infiltration on flood propagation with different peak shape coefficients and duration
par: Jingming Hou, et autres
Publié: (2021) -
Water for life making it happen.
Publié: (2005) -
El agua y la vida : ¡Aprende jugando! /
par: Gutiérrez Aranzeta, Carlos, et autres
Publié: (2007) -
Remote-sensing-based algorithms for water quality monitoring in Olushandja Dam, north-central Namibia
par: Taimi S. Kapalanga, et autres
Publié: (2021) -
A novel framework for prediction of dam deformation based on extreme learning machine and Lévy flight bat algorithm
par: Youliang Chen, et autres
Publié: (2021)