Domain-Guided Machine Learning for Remotely Sensed In-Season Crop Growth Estimation
Advanced machine learning techniques have been used in remote sensing (RS) applications such as crop mapping and yield prediction, but remain under-utilized for tracking crop progress. In this study, we demonstrate the use of agronomic knowledge of crop growth drivers in a Long Short-Term Memory-bas...
Guardado en:
Autores principales: | George Worrall, Anand Rangarajan, Jasmeet Judge |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8537054293da40fd830ceb330f6817a0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Short-Term to Long-Term Plasticity Transition Behavior of Memristive Devices with Low Power Consumption via Facilitating Ionic Drift of Implanted Lithium
por: Young Pyo Jeon, et al.
Publicado: (2021) -
Aircraft Gearbox Fault Diagnosis System: An Approach based on Deep Learning Techniques
por: Mallikarjuna P B, et al.
Publicado: (2020) -
Progress and Prospects of Crop Diseases and Pests Monitoring by Remote Sensing
por: HUANG Wenjiang, et al.
Publicado: (2019) -
Water Flow Forecasting Based on River Tributaries Using Long Short-Term Memory Ensemble Model
por: Diogo F. Costa Silva, et al.
Publicado: (2021) -
Memory-Augmented Transformer for Remote Sensing Image Semantic Segmentation
por: Xin Zhao, et al.
Publicado: (2021)