Combining 3D Radiative Transfer Model and Convolutional Neural Network to Accurately Estimate Forest Canopy Cover From Very High-Resolution Satellite Images
Forest canopy cover (FCC) plays an important role in many ecological, hydrological and forestry applications. For large-scale applications, FCC is usually estimated from remotely sensed data by inverting radiative transfer models (RTMs) or using data-driven regressions. In this article, we proposed...
Guardado en:
Autores principales: | Decai Jin, Jianbo Qi, Huaguo Huang, Linyuan Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/85399ec30deb4e0aa5a97f8662d06943 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Very Rapid Forest Cover Change in Sichuan Province, China: 40 Years of Change Using Images From Declassified Spy Satellites and Landsat
por: Dan-Xia Song, et al.
Publicado: (2021) -
A New Convolutional Kernel Classifier for Hyperspectral Image Classification
por: Mohsen Ansari, et al.
Publicado: (2021) -
Hyperspectral Unmixing Based on Spectral and Sparse Deep Convolutional Neural Networks
por: Lulu Wan, et al.
Publicado: (2021) -
Anchor-Free SAR Ship Instance Segmentation With Centroid-Distance Based Loss
por: Fei Gao, et al.
Publicado: (2021) -
Attention_FPNet: Two-Branch Remote Sensing Image Pansharpening Network Based on Attention Feature Fusion
por: Xiwu Zhong, et al.
Publicado: (2021)