Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival

Identifying molecular subtypes of cancer can improve personalized treatment. Here the authors present CIMLR, an algorithm that integrates multi-omic data to reveal cancer subtypes; subtypes discovered by CIMLR differ in activity of cancer-associated pathways and are significantly predictive of patie...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daniele Ramazzotti, Avantika Lal, Bo Wang, Serafim Batzoglou, Arend Sidow
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/854b133896654b718d0116d257de03ee
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:854b133896654b718d0116d257de03ee
record_format dspace
spelling oai:doaj.org-article:854b133896654b718d0116d257de03ee2021-12-02T17:31:59ZMulti-omic tumor data reveal diversity of molecular mechanisms that correlate with survival10.1038/s41467-018-06921-82041-1723https://doaj.org/article/854b133896654b718d0116d257de03ee2018-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-06921-8https://doaj.org/toc/2041-1723Identifying molecular subtypes of cancer can improve personalized treatment. Here the authors present CIMLR, an algorithm that integrates multi-omic data to reveal cancer subtypes; subtypes discovered by CIMLR differ in activity of cancer-associated pathways and are significantly predictive of patient outcomes.Daniele RamazzottiAvantika LalBo WangSerafim BatzoglouArend SidowNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-14 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Daniele Ramazzotti
Avantika Lal
Bo Wang
Serafim Batzoglou
Arend Sidow
Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival
description Identifying molecular subtypes of cancer can improve personalized treatment. Here the authors present CIMLR, an algorithm that integrates multi-omic data to reveal cancer subtypes; subtypes discovered by CIMLR differ in activity of cancer-associated pathways and are significantly predictive of patient outcomes.
format article
author Daniele Ramazzotti
Avantika Lal
Bo Wang
Serafim Batzoglou
Arend Sidow
author_facet Daniele Ramazzotti
Avantika Lal
Bo Wang
Serafim Batzoglou
Arend Sidow
author_sort Daniele Ramazzotti
title Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival
title_short Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival
title_full Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival
title_fullStr Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival
title_full_unstemmed Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival
title_sort multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/854b133896654b718d0116d257de03ee
work_keys_str_mv AT danieleramazzotti multiomictumordatarevealdiversityofmolecularmechanismsthatcorrelatewithsurvival
AT avantikalal multiomictumordatarevealdiversityofmolecularmechanismsthatcorrelatewithsurvival
AT bowang multiomictumordatarevealdiversityofmolecularmechanismsthatcorrelatewithsurvival
AT serafimbatzoglou multiomictumordatarevealdiversityofmolecularmechanismsthatcorrelatewithsurvival
AT arendsidow multiomictumordatarevealdiversityofmolecularmechanismsthatcorrelatewithsurvival
_version_ 1718380438395813888