Fusion of clathrin and caveolae endocytic vesicles revealed by line-switching dual-color STED microscopy
Clathrin- and caveolae-mediated endocytosis are the most commonly used pathways for the internalization of cell membrane receptors. However, due to their dimensions are within the diffraction limit, traditional fluorescence microscopy cannot distinguish them and little is known about their interacti...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
World Scientific Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/854b262e7797479faa776b514b6949d2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:854b262e7797479faa776b514b6949d2 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:854b262e7797479faa776b514b6949d22021-11-23T13:04:53ZFusion of clathrin and caveolae endocytic vesicles revealed by line-switching dual-color STED microscopy1793-54581793-720510.1142/S1793545821500176https://doaj.org/article/854b262e7797479faa776b514b6949d22021-11-01T00:00:00Zhttp://www.worldscientific.com/doi/epdf/10.1142/S1793545821500176https://doaj.org/toc/1793-5458https://doaj.org/toc/1793-7205Clathrin- and caveolae-mediated endocytosis are the most commonly used pathways for the internalization of cell membrane receptors. However, due to their dimensions are within the diffraction limit, traditional fluorescence microscopy cannot distinguish them and little is known about their interactions underneath cell membrane. In this study, we proposed the line-switching scanning imaging mode for dual-color triplet-state relaxation (T-Rex) stimulated emission depletion (STED) super-resolution microscopy. With this line-switching mode, the cross-talk between the two channels, the side effects from pulse picker and image drift in frame scanning mode can be effectively eliminated. The dual-color super-resolution imaging results in mixed fluorescent beads validated the excellent performance. With this super-resolution microscope, not only the ring-shaped structure of clathrin and caveolae endocytic vesicles, but also their semi-fused structures underneath the cell membrane were distinguished clearly. The resultant information will greatly facilitate the study of clathrin- and caveolae-mediated receptor endocytosis and signaling process and also our home-built dual-color T-Rex STED microscope with this line-switching imaging mode provides a precise and convenient way to study subcellular-scale protein interactions.Hefei RuanJianqiang YuYayun WuXiaojun TangJinghe YuanXiaohong FangWorld Scientific Publishingarticlesuper-resolution microscopysteddual-colorendocytosisline-switchingTechnologyTOptics. LightQC350-467ENJournal of Innovative Optical Health Sciences, Vol 14, Iss 6, Pp 2150017-1-2150017-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
super-resolution microscopy sted dual-color endocytosis line-switching Technology T Optics. Light QC350-467 |
spellingShingle |
super-resolution microscopy sted dual-color endocytosis line-switching Technology T Optics. Light QC350-467 Hefei Ruan Jianqiang Yu Yayun Wu Xiaojun Tang Jinghe Yuan Xiaohong Fang Fusion of clathrin and caveolae endocytic vesicles revealed by line-switching dual-color STED microscopy |
description |
Clathrin- and caveolae-mediated endocytosis are the most commonly used pathways for the internalization of cell membrane receptors. However, due to their dimensions are within the diffraction limit, traditional fluorescence microscopy cannot distinguish them and little is known about their interactions underneath cell membrane. In this study, we proposed the line-switching scanning imaging mode for dual-color triplet-state relaxation (T-Rex) stimulated emission depletion (STED) super-resolution microscopy. With this line-switching mode, the cross-talk between the two channels, the side effects from pulse picker and image drift in frame scanning mode can be effectively eliminated. The dual-color super-resolution imaging results in mixed fluorescent beads validated the excellent performance. With this super-resolution microscope, not only the ring-shaped structure of clathrin and caveolae endocytic vesicles, but also their semi-fused structures underneath the cell membrane were distinguished clearly. The resultant information will greatly facilitate the study of clathrin- and caveolae-mediated receptor endocytosis and signaling process and also our home-built dual-color T-Rex STED microscope with this line-switching imaging mode provides a precise and convenient way to study subcellular-scale protein interactions. |
format |
article |
author |
Hefei Ruan Jianqiang Yu Yayun Wu Xiaojun Tang Jinghe Yuan Xiaohong Fang |
author_facet |
Hefei Ruan Jianqiang Yu Yayun Wu Xiaojun Tang Jinghe Yuan Xiaohong Fang |
author_sort |
Hefei Ruan |
title |
Fusion of clathrin and caveolae endocytic vesicles revealed by line-switching dual-color STED microscopy |
title_short |
Fusion of clathrin and caveolae endocytic vesicles revealed by line-switching dual-color STED microscopy |
title_full |
Fusion of clathrin and caveolae endocytic vesicles revealed by line-switching dual-color STED microscopy |
title_fullStr |
Fusion of clathrin and caveolae endocytic vesicles revealed by line-switching dual-color STED microscopy |
title_full_unstemmed |
Fusion of clathrin and caveolae endocytic vesicles revealed by line-switching dual-color STED microscopy |
title_sort |
fusion of clathrin and caveolae endocytic vesicles revealed by line-switching dual-color sted microscopy |
publisher |
World Scientific Publishing |
publishDate |
2021 |
url |
https://doaj.org/article/854b262e7797479faa776b514b6949d2 |
work_keys_str_mv |
AT hefeiruan fusionofclathrinandcaveolaeendocyticvesiclesrevealedbylineswitchingdualcolorstedmicroscopy AT jianqiangyu fusionofclathrinandcaveolaeendocyticvesiclesrevealedbylineswitchingdualcolorstedmicroscopy AT yayunwu fusionofclathrinandcaveolaeendocyticvesiclesrevealedbylineswitchingdualcolorstedmicroscopy AT xiaojuntang fusionofclathrinandcaveolaeendocyticvesiclesrevealedbylineswitchingdualcolorstedmicroscopy AT jingheyuan fusionofclathrinandcaveolaeendocyticvesiclesrevealedbylineswitchingdualcolorstedmicroscopy AT xiaohongfang fusionofclathrinandcaveolaeendocyticvesiclesrevealedbylineswitchingdualcolorstedmicroscopy |
_version_ |
1718416713908748288 |