A Lightweight Hierarchical Model with Frame-Level Joints Adaptive Graph Convolution for Skeleton-Based Action Recognition
In skeleton-based human action recognition methods, human behaviours can be analysed through temporal and spatial changes in the human skeleton. Skeletons are not limited by clothing changes, lighting conditions, or complex backgrounds. This recognition method is robust and has aroused great interes...
Guardado en:
Autores principales: | Yujian Jiang, Xue Yang, Jingyu Liu, Junming Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi-Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/855d85fdcdfa4150a64cc6b93aea8a0f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Contactless Multispectral Palm-Vein Recognition With Lightweight Convolutional Neural Network
por: Yung-Yao Chen, et al.
Publicado: (2021) -
Comparative Analysis of the Application of Multilayer and Convolutional Neural Networks for Recognition of Handwritten Letters of the Azerbaijani Alphabet
por: Elshan Mustafayev, et al.
Publicado: (2021) -
Human Action Recognition of Spatiotemporal Parameters for Skeleton Sequences Using MTLN Feature Learning Framework
por: Faisal Mehmood, et al.
Publicado: (2021) -
Joint Trajectory Prediction of Multi-Linkage Robot Based on Graph Convolutional Network
por: Hu Wu, et al.
Publicado: (2020) -
Permutation-Based Lightweight Authenticated Cipher with Beyond Conventional Security
por: Ping Zhang
Publicado: (2021)