Transcriptome analysis in tissue sectors with contrasting crocins accumulation provides novel insights into apocarotenoid biosynthesis and regulation during chromoplast biogenesis
Abstract Crocins, the red soluble apocarotenoids of saffron, accumulate in the flowers of Crocus species in a developmental and tissue-specific manner. In Crocus sieberi, crocins accumulate in stigmas but also in a distinct yellow tepal sector, which we demonstrate contains chromoplast converted fro...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/855f46ea9fcf4155a308c8556b3077f0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:855f46ea9fcf4155a308c8556b3077f0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:855f46ea9fcf4155a308c8556b3077f02021-12-02T15:07:59ZTranscriptome analysis in tissue sectors with contrasting crocins accumulation provides novel insights into apocarotenoid biosynthesis and regulation during chromoplast biogenesis10.1038/s41598-018-21225-z2045-2322https://doaj.org/article/855f46ea9fcf4155a308c8556b3077f02018-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-21225-zhttps://doaj.org/toc/2045-2322Abstract Crocins, the red soluble apocarotenoids of saffron, accumulate in the flowers of Crocus species in a developmental and tissue-specific manner. In Crocus sieberi, crocins accumulate in stigmas but also in a distinct yellow tepal sector, which we demonstrate contains chromoplast converted from amyloplasts. Secondary metabolites were analysed by LC-DAD-HRMS, revealing the progressive accumulation of crocetin and crocins in the yellow sector, which were also localized in situ by Raman microspectroscopy. To understand the underlying mechanisms of crocin biosynthesis, we sequenced the C. sieberi tepal transcriptome of two differentially pigmented sectors (yellow and white) at two developmental stages (6 and 8) by Illumina sequencing. A total of 154 million high-quality reads were generated and assembled into 248,099 transcripts. Differentially expressed gene analysis resulted in the identification of several potential candidate genes involved in crocin metabolism and regulation. The results provide a first profile of the molecular events related to the dynamics of crocetin and crocin accumulation during tepal development, and present new information concerning apocarotenoid biosynthesis regulators and their accumulation in Crocus. Further, reveals genes that were previously unknown to affect crocin formation, which could be used to improve crocin accumulation in Crocus plants and the commercial quality of saffron spice.Oussama AhrazemJavier ArgandoñaAlessia FioreCarolina AguadoRafael LujánÁngela Rubio-MoragaMónica MarroCuauhtémoc Araujo-AndradePablo Loza-AlvarezGianfranco DirettoLourdes Gómez-GómezNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-17 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Oussama Ahrazem Javier Argandoña Alessia Fiore Carolina Aguado Rafael Luján Ángela Rubio-Moraga Mónica Marro Cuauhtémoc Araujo-Andrade Pablo Loza-Alvarez Gianfranco Diretto Lourdes Gómez-Gómez Transcriptome analysis in tissue sectors with contrasting crocins accumulation provides novel insights into apocarotenoid biosynthesis and regulation during chromoplast biogenesis |
description |
Abstract Crocins, the red soluble apocarotenoids of saffron, accumulate in the flowers of Crocus species in a developmental and tissue-specific manner. In Crocus sieberi, crocins accumulate in stigmas but also in a distinct yellow tepal sector, which we demonstrate contains chromoplast converted from amyloplasts. Secondary metabolites were analysed by LC-DAD-HRMS, revealing the progressive accumulation of crocetin and crocins in the yellow sector, which were also localized in situ by Raman microspectroscopy. To understand the underlying mechanisms of crocin biosynthesis, we sequenced the C. sieberi tepal transcriptome of two differentially pigmented sectors (yellow and white) at two developmental stages (6 and 8) by Illumina sequencing. A total of 154 million high-quality reads were generated and assembled into 248,099 transcripts. Differentially expressed gene analysis resulted in the identification of several potential candidate genes involved in crocin metabolism and regulation. The results provide a first profile of the molecular events related to the dynamics of crocetin and crocin accumulation during tepal development, and present new information concerning apocarotenoid biosynthesis regulators and their accumulation in Crocus. Further, reveals genes that were previously unknown to affect crocin formation, which could be used to improve crocin accumulation in Crocus plants and the commercial quality of saffron spice. |
format |
article |
author |
Oussama Ahrazem Javier Argandoña Alessia Fiore Carolina Aguado Rafael Luján Ángela Rubio-Moraga Mónica Marro Cuauhtémoc Araujo-Andrade Pablo Loza-Alvarez Gianfranco Diretto Lourdes Gómez-Gómez |
author_facet |
Oussama Ahrazem Javier Argandoña Alessia Fiore Carolina Aguado Rafael Luján Ángela Rubio-Moraga Mónica Marro Cuauhtémoc Araujo-Andrade Pablo Loza-Alvarez Gianfranco Diretto Lourdes Gómez-Gómez |
author_sort |
Oussama Ahrazem |
title |
Transcriptome analysis in tissue sectors with contrasting crocins accumulation provides novel insights into apocarotenoid biosynthesis and regulation during chromoplast biogenesis |
title_short |
Transcriptome analysis in tissue sectors with contrasting crocins accumulation provides novel insights into apocarotenoid biosynthesis and regulation during chromoplast biogenesis |
title_full |
Transcriptome analysis in tissue sectors with contrasting crocins accumulation provides novel insights into apocarotenoid biosynthesis and regulation during chromoplast biogenesis |
title_fullStr |
Transcriptome analysis in tissue sectors with contrasting crocins accumulation provides novel insights into apocarotenoid biosynthesis and regulation during chromoplast biogenesis |
title_full_unstemmed |
Transcriptome analysis in tissue sectors with contrasting crocins accumulation provides novel insights into apocarotenoid biosynthesis and regulation during chromoplast biogenesis |
title_sort |
transcriptome analysis in tissue sectors with contrasting crocins accumulation provides novel insights into apocarotenoid biosynthesis and regulation during chromoplast biogenesis |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/855f46ea9fcf4155a308c8556b3077f0 |
work_keys_str_mv |
AT oussamaahrazem transcriptomeanalysisintissuesectorswithcontrastingcrocinsaccumulationprovidesnovelinsightsintoapocarotenoidbiosynthesisandregulationduringchromoplastbiogenesis AT javierargandona transcriptomeanalysisintissuesectorswithcontrastingcrocinsaccumulationprovidesnovelinsightsintoapocarotenoidbiosynthesisandregulationduringchromoplastbiogenesis AT alessiafiore transcriptomeanalysisintissuesectorswithcontrastingcrocinsaccumulationprovidesnovelinsightsintoapocarotenoidbiosynthesisandregulationduringchromoplastbiogenesis AT carolinaaguado transcriptomeanalysisintissuesectorswithcontrastingcrocinsaccumulationprovidesnovelinsightsintoapocarotenoidbiosynthesisandregulationduringchromoplastbiogenesis AT rafaellujan transcriptomeanalysisintissuesectorswithcontrastingcrocinsaccumulationprovidesnovelinsightsintoapocarotenoidbiosynthesisandregulationduringchromoplastbiogenesis AT angelarubiomoraga transcriptomeanalysisintissuesectorswithcontrastingcrocinsaccumulationprovidesnovelinsightsintoapocarotenoidbiosynthesisandregulationduringchromoplastbiogenesis AT monicamarro transcriptomeanalysisintissuesectorswithcontrastingcrocinsaccumulationprovidesnovelinsightsintoapocarotenoidbiosynthesisandregulationduringchromoplastbiogenesis AT cuauhtemocaraujoandrade transcriptomeanalysisintissuesectorswithcontrastingcrocinsaccumulationprovidesnovelinsightsintoapocarotenoidbiosynthesisandregulationduringchromoplastbiogenesis AT pablolozaalvarez transcriptomeanalysisintissuesectorswithcontrastingcrocinsaccumulationprovidesnovelinsightsintoapocarotenoidbiosynthesisandregulationduringchromoplastbiogenesis AT gianfrancodiretto transcriptomeanalysisintissuesectorswithcontrastingcrocinsaccumulationprovidesnovelinsightsintoapocarotenoidbiosynthesisandregulationduringchromoplastbiogenesis AT lourdesgomezgomez transcriptomeanalysisintissuesectorswithcontrastingcrocinsaccumulationprovidesnovelinsightsintoapocarotenoidbiosynthesisandregulationduringchromoplastbiogenesis |
_version_ |
1718388327745323008 |