SNP-based assessment of genetic purity and diversity in maize hybrid breeding.

Assessment of genetic purity of parental inbred lines and their resultant F1 hybrids is an essential quality control check in maize hybrid breeding, variety release and seed production. In this study, genetic purity, parent-offspring relationship and diversity among the inbred lines were assessed us...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chimwemwe Josia, Kingstone Mashingaidze, Assefa B Amelework, Aleck Kondwakwenda, Cousin Musvosvi, Julia Sibiya
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/856d61a5c02345c7a145ae7863e6b56e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Assessment of genetic purity of parental inbred lines and their resultant F1 hybrids is an essential quality control check in maize hybrid breeding, variety release and seed production. In this study, genetic purity, parent-offspring relationship and diversity among the inbred lines were assessed using 92 single-nucleotide polymorphism (SNP) markers. A total of 188 maize genotypes, comprising of 26 inbred lines, four doubled haploid (DH) lines and 158 single-cross maize hybrids were investigated in this study using Kompetitive Allele Specific Polymerase Chain Reaction (KASP) genotyping assays. The bi-allelic data was analyzed for genetic purity and diversity parameters using GenAlex software. The SNP markers were highly polymorphic and 90% had polymorphic information content (PIC) values of > 0.3. Pairwise genetic distances among the lines ranged from 0.05 to 0.56, indicating a high level of dissimilarity among the inbred lines. A maximum genetic distance of (0.56) was observed between inbred lines CKDHL0089 and CML443 while the lowest (0.05) was between I-42 and I-40. The majority (67%) of the inbred lines studied were genetically pure with residual heterozygosity of <5%, while only 33% had heterozygosity levels of >5%. Inbred lines, which were not pure, require purification through further inbreeding. Cluster analysis partitioned the lines into three distinct genetic clusters with the potential to contribute new beneficial alleles to the maize breeding program. Out of the 68 hybrids (43%) that passed the parent-offspring test, seven hybrids namely; SCHP29, SCHP95, SCHP94, SCHP134, SCHP44, SCHP114 and SCHP126, were selected as potential candidates for further evaluation and release due to their outstanding yield performance.