A deep learning based automatic segmentation approach for anatomical structures in intensity modulation radiotherapy
Objective: To evaluate the automatic segmentation approach for organ at risk (OARs) and compare the parameters of dose volume histogram (DVH) in radiotherapy. Methodology: Thirty-three patients were selected to contour OARs using automatic segmentation approach which based on U-Net, applying them t...
Guardado en:
Autores principales: | Han Zhou, Yikun Li, Ying Gu, Zetian Shen, Xixu Zhu, Yun Ge |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/85948d365ee046f193c37539525c2b9b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Simple Alternative Method for Determining Wedge Angle in Chest Wall Radiotherapy Treatment Planning
por: A Ghanbarzadeh,, et al.
Publicado: (2012) -
A self-adaptive prescription dose optimization algorithm for radiotherapy
por: Yin Chuou, et al.
Publicado: (2021) -
Second-order ResU-Net for automatic MRI brain tumor segmentation
por: Ning Sheng, et al.
Publicado: (2021) -
Deep Learning-Augmented Head and Neck Organs at Risk Segmentation From CT Volumes
por: Wei Wang, et al.
Publicado: (2021) -
Mixed-Beam Approach for High-Risk Prostate Cancer Carbon-Ion Boost Followed by Photon Intensity-Modulated Radiotherapy: Preliminary Results of Phase II Trial AIRC-IG-14300
por: Giulia Marvaso, et al.
Publicado: (2021)