Inferring and validating mechanistic models of neural microcircuits based on spike-train data

It is difficult to fit mechanistic, biophysically constrained circuit models to spike train data from in vivo extracellular recordings. Here the authors present analytical methods that enable efficient parameter estimation for integrate-and-fire circuit models and inference of the underlying connect...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Josef Ladenbauer, Sam McKenzie, Daniel Fine English, Olivier Hagens, Srdjan Ostojic
Format: article
Langue:EN
Publié: Nature Portfolio 2019
Sujets:
Q
Accès en ligne:https://doaj.org/article/85a037d778554f659901d36b5d3fc974
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:It is difficult to fit mechanistic, biophysically constrained circuit models to spike train data from in vivo extracellular recordings. Here the authors present analytical methods that enable efficient parameter estimation for integrate-and-fire circuit models and inference of the underlying connectivity structure in subsampled networks.