Inferring and validating mechanistic models of neural microcircuits based on spike-train data

It is difficult to fit mechanistic, biophysically constrained circuit models to spike train data from in vivo extracellular recordings. Here the authors present analytical methods that enable efficient parameter estimation for integrate-and-fire circuit models and inference of the underlying connect...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Josef Ladenbauer, Sam McKenzie, Daniel Fine English, Olivier Hagens, Srdjan Ostojic
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/85a037d778554f659901d36b5d3fc974
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:It is difficult to fit mechanistic, biophysically constrained circuit models to spike train data from in vivo extracellular recordings. Here the authors present analytical methods that enable efficient parameter estimation for integrate-and-fire circuit models and inference of the underlying connectivity structure in subsampled networks.