Inferring and validating mechanistic models of neural microcircuits based on spike-train data
It is difficult to fit mechanistic, biophysically constrained circuit models to spike train data from in vivo extracellular recordings. Here the authors present analytical methods that enable efficient parameter estimation for integrate-and-fire circuit models and inference of the underlying connect...
Enregistré dans:
Auteurs principaux: | , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/85a037d778554f659901d36b5d3fc974 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | It is difficult to fit mechanistic, biophysically constrained circuit models to spike train data from in vivo extracellular recordings. Here the authors present analytical methods that enable efficient parameter estimation for integrate-and-fire circuit models and inference of the underlying connectivity structure in subsampled networks. |
---|