Inferring and validating mechanistic models of neural microcircuits based on spike-train data

It is difficult to fit mechanistic, biophysically constrained circuit models to spike train data from in vivo extracellular recordings. Here the authors present analytical methods that enable efficient parameter estimation for integrate-and-fire circuit models and inference of the underlying connect...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Josef Ladenbauer, Sam McKenzie, Daniel Fine English, Olivier Hagens, Srdjan Ostojic
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/85a037d778554f659901d36b5d3fc974
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:85a037d778554f659901d36b5d3fc974
record_format dspace
spelling oai:doaj.org-article:85a037d778554f659901d36b5d3fc9742021-12-02T17:02:14ZInferring and validating mechanistic models of neural microcircuits based on spike-train data10.1038/s41467-019-12572-02041-1723https://doaj.org/article/85a037d778554f659901d36b5d3fc9742019-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-12572-0https://doaj.org/toc/2041-1723It is difficult to fit mechanistic, biophysically constrained circuit models to spike train data from in vivo extracellular recordings. Here the authors present analytical methods that enable efficient parameter estimation for integrate-and-fire circuit models and inference of the underlying connectivity structure in subsampled networks.Josef LadenbauerSam McKenzieDaniel Fine EnglishOlivier HagensSrdjan OstojicNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-17 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Josef Ladenbauer
Sam McKenzie
Daniel Fine English
Olivier Hagens
Srdjan Ostojic
Inferring and validating mechanistic models of neural microcircuits based on spike-train data
description It is difficult to fit mechanistic, biophysically constrained circuit models to spike train data from in vivo extracellular recordings. Here the authors present analytical methods that enable efficient parameter estimation for integrate-and-fire circuit models and inference of the underlying connectivity structure in subsampled networks.
format article
author Josef Ladenbauer
Sam McKenzie
Daniel Fine English
Olivier Hagens
Srdjan Ostojic
author_facet Josef Ladenbauer
Sam McKenzie
Daniel Fine English
Olivier Hagens
Srdjan Ostojic
author_sort Josef Ladenbauer
title Inferring and validating mechanistic models of neural microcircuits based on spike-train data
title_short Inferring and validating mechanistic models of neural microcircuits based on spike-train data
title_full Inferring and validating mechanistic models of neural microcircuits based on spike-train data
title_fullStr Inferring and validating mechanistic models of neural microcircuits based on spike-train data
title_full_unstemmed Inferring and validating mechanistic models of neural microcircuits based on spike-train data
title_sort inferring and validating mechanistic models of neural microcircuits based on spike-train data
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/85a037d778554f659901d36b5d3fc974
work_keys_str_mv AT josefladenbauer inferringandvalidatingmechanisticmodelsofneuralmicrocircuitsbasedonspiketraindata
AT sammckenzie inferringandvalidatingmechanisticmodelsofneuralmicrocircuitsbasedonspiketraindata
AT danielfineenglish inferringandvalidatingmechanisticmodelsofneuralmicrocircuitsbasedonspiketraindata
AT olivierhagens inferringandvalidatingmechanisticmodelsofneuralmicrocircuitsbasedonspiketraindata
AT srdjanostojic inferringandvalidatingmechanisticmodelsofneuralmicrocircuitsbasedonspiketraindata
_version_ 1718381916916285440