Inferring and validating mechanistic models of neural microcircuits based on spike-train data
It is difficult to fit mechanistic, biophysically constrained circuit models to spike train data from in vivo extracellular recordings. Here the authors present analytical methods that enable efficient parameter estimation for integrate-and-fire circuit models and inference of the underlying connect...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/85a037d778554f659901d36b5d3fc974 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:85a037d778554f659901d36b5d3fc974 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:85a037d778554f659901d36b5d3fc9742021-12-02T17:02:14ZInferring and validating mechanistic models of neural microcircuits based on spike-train data10.1038/s41467-019-12572-02041-1723https://doaj.org/article/85a037d778554f659901d36b5d3fc9742019-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-12572-0https://doaj.org/toc/2041-1723It is difficult to fit mechanistic, biophysically constrained circuit models to spike train data from in vivo extracellular recordings. Here the authors present analytical methods that enable efficient parameter estimation for integrate-and-fire circuit models and inference of the underlying connectivity structure in subsampled networks.Josef LadenbauerSam McKenzieDaniel Fine EnglishOlivier HagensSrdjan OstojicNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-17 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Josef Ladenbauer Sam McKenzie Daniel Fine English Olivier Hagens Srdjan Ostojic Inferring and validating mechanistic models of neural microcircuits based on spike-train data |
description |
It is difficult to fit mechanistic, biophysically constrained circuit models to spike train data from in vivo extracellular recordings. Here the authors present analytical methods that enable efficient parameter estimation for integrate-and-fire circuit models and inference of the underlying connectivity structure in subsampled networks. |
format |
article |
author |
Josef Ladenbauer Sam McKenzie Daniel Fine English Olivier Hagens Srdjan Ostojic |
author_facet |
Josef Ladenbauer Sam McKenzie Daniel Fine English Olivier Hagens Srdjan Ostojic |
author_sort |
Josef Ladenbauer |
title |
Inferring and validating mechanistic models of neural microcircuits based on spike-train data |
title_short |
Inferring and validating mechanistic models of neural microcircuits based on spike-train data |
title_full |
Inferring and validating mechanistic models of neural microcircuits based on spike-train data |
title_fullStr |
Inferring and validating mechanistic models of neural microcircuits based on spike-train data |
title_full_unstemmed |
Inferring and validating mechanistic models of neural microcircuits based on spike-train data |
title_sort |
inferring and validating mechanistic models of neural microcircuits based on spike-train data |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/85a037d778554f659901d36b5d3fc974 |
work_keys_str_mv |
AT josefladenbauer inferringandvalidatingmechanisticmodelsofneuralmicrocircuitsbasedonspiketraindata AT sammckenzie inferringandvalidatingmechanisticmodelsofneuralmicrocircuitsbasedonspiketraindata AT danielfineenglish inferringandvalidatingmechanisticmodelsofneuralmicrocircuitsbasedonspiketraindata AT olivierhagens inferringandvalidatingmechanisticmodelsofneuralmicrocircuitsbasedonspiketraindata AT srdjanostojic inferringandvalidatingmechanisticmodelsofneuralmicrocircuitsbasedonspiketraindata |
_version_ |
1718381916916285440 |