Inferring and validating mechanistic models of neural microcircuits based on spike-train data
It is difficult to fit mechanistic, biophysically constrained circuit models to spike train data from in vivo extracellular recordings. Here the authors present analytical methods that enable efficient parameter estimation for integrate-and-fire circuit models and inference of the underlying connect...
Enregistré dans:
Auteurs principaux: | Josef Ladenbauer, Sam McKenzie, Daniel Fine English, Olivier Hagens, Srdjan Ostojic |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/85a037d778554f659901d36b5d3fc974 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity.
par: Bernhard Nessler, et autres
Publié: (2013) -
Supervised learning in spiking neural networks with FORCE training
par: Wilten Nicola, et autres
Publié: (2017) -
SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training
par: Fangxin Liu, et autres
Publié: (2021) -
Inhibitory microcircuits for top-down plasticity of sensory representations
par: Katharina Anna Wilmes, et autres
Publié: (2019) -
A convolutional neural network for estimating synaptic connectivity from spike trains
par: Daisuke Endo, et autres
Publié: (2021)